Skip to main content
    • Aa
    • Aa

Non-equilibrium dynamics of dense gas under tight confinement

  • Lei Wu (a1), Haihu Liu (a2), Jason M. Reese (a3) and Yonghao Zhang (a1)

The force-driven Poiseuille flow of dense gases between two parallel plates is investigated through the numerical solution of the generalized Enskog equation for two-dimensional hard discs. We focus on the competing effects of the mean free path ${\it\lambda}$ , the channel width $L$ and the disc diameter ${\it\sigma}$ . For elastic collisions between hard discs, the normalized mass flow rate in the hydrodynamic limit increases with $L/{\it\sigma}$ for a fixed Knudsen number (defined as $Kn={\it\lambda}/L$ ), but is always smaller than that predicted by the Boltzmann equation. Also, for a fixed $L/{\it\sigma}$ , the mass flow rate in the hydrodynamic flow regime is not a monotonically decreasing function of $Kn$ but has a maximum when the solid fraction is approximately 0.3. Under ultra-tight confinement, the famous Knudsen minimum disappears, and the mass flow rate increases with $Kn$ , and is larger than that predicted by the Boltzmann equation in the free-molecular flow regime; for a fixed $Kn$ , the smaller $L/{\it\sigma}$ is, the larger the mass flow rate. In the transitional flow regime, however, the variation of the mass flow rate with $L/{\it\sigma}$ is not monotonic for a fixed $Kn$ : the minimum mass flow rate occurs at $L/{\it\sigma}\approx 2{-}3$ . For inelastic collisions, the energy dissipation between the hard discs always enhances the mass flow rate. Anomalous slip velocity is also found, which decreases with increasing Knudsen number. The mechanism for these exotic behaviours is analysed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Non-equilibrium dynamics of dense gas under tight confinement
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Non-equilibrium dynamics of dense gas under tight confinement
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Non-equilibrium dynamics of dense gas under tight confinement
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence:
Hide All
AlamM., MahajanA. & ShivannaD. 2015 On Knudsen-minimum effect and temperature bimodality in a dilute granular Poiseuille flow. J. Fluid Mech. 782, 99126.
AokiK., TakataS. & NakanishiT. 2002 Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force. Phys. Rev. E 65, 026315.
AransonI. S. & TsimringL. S. 2006 Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641692.
BarbanteP., FrezzottiA. & GibelliL. 2015 A kinetic theory description of liquid menisci at the microscale. Kinet. Relat. Models 8, 235254.
BausM. & ColotJ. L. 1987 Thermodynamics and structure of a fluid of hard rods, disks, spheres, or hyperspheres from rescaled virial expansions. Phys. Rev. A 36, 39123925.
BobylevA. V., CarrilloJ. A. & GambaI. M. 2000 On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys. 98, 743773.
BreyJ. J., DuftyJ. W. & SantosA. 1997 Dissipative dynamics for hard spheres. J. Stat. Phys. 87, 10511066.
BrilliantovN. & PöschelT. 2004 Kinetic Theory of Granular Gases. Oxford University Press.
CercignaniC. 1963 Plane Poiseuille flow and Knudsen minimum effect. In Rarefied Gas Dynamics (ed. Laurmann J. A.), vol. II, pp. 92101.
CercignaniC., LampisM. & LorenzaniS. 2007 On the Reynolds equation for linearized models of the Boltzmann operator. Transp. Theory Stat. Phys. 36, 257280.
ChapmanS. & CowlingT. G. 1970 The Mathematical Theory of Non-Uniform Gases. Cambridge University Press.
DarabiH., EttehadA., JavadpourF. & SepehrnooriK. 2012 Gas flow in ultra-tight shale strata. J. Fluid Mech. 710, 641658.
EstebanM. J. & PerthameB. 1991 On the modified Enskog equation for elastic and inelastic collisions. Models with spin. Ann. Inst. Henri Poincaré 8, 289308.
FrezzottiA. 1997 A particle scheme for the numerical solution of the Enskog equation. Phys. Fluids 9, 13291335.
FrezzottiA. 1998 Molecular dynamics and Enskog theory calculation of shock profiles in a dense hard sphere gas. Comput. Math. Applics. 35, 103112.
FrezzottiA., GibelliL. & LorenzaniS. 2005 Mean field kinetic theory description of evaporation of a fluid into vacuum. Phys. Fluids 17, 012102.
FukuiS. & KanekoR. 1987 Analysis of ultra-thin gas film lubrication based on the linearized Boltzmann equation (influence of accommodation coefficient). JSME Intl J. 30, 16601666.
FukuiS. & KanekoR. 1990 A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems. J. Tribol. 112, 7883.
GalvinJ. E., HrenyaC. M. & WildmanR. D. 2007 On the role of the Knudsen layer in rapid granular flows. J. Fluid Mech. 585, 7392.
Garcia-RojoR., LudingS. & BreyJ. J. 2006 Transport coefficients for dense hard-disk systems. Phys. Rev. E 74, 061305.
GarzóV. & DuftyJ. W. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 58955911.
GoldsteinA. & ShapiroM. 1995 Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid Mech. 282, 75114.
GrmelaM. 1971 Kinetic equation approach to phase transitions. J. Stat. Phys. 3, 347364.
GuX. J. & EmersonD. R. 2009 A high-order moment approach for capturing non-equilibrium phenomena in the transition regime. J. Fluid Mech. 636, 177216.
HadjiconstantinouN. G. 2003 Comment on Cercignani’s second-order slip coefficient. Phys. Fluids 15, 23522354.
HendersonD. 1975 Simple equation of state for hard disks. Mol. Phys. 30, 971972.
HoltJ. K., ParkH. G., WangY., StadermannM., ArtyukhinA. B., GrigoropoulosC. P., NoyA. & BakajinO. 2006 Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 10341037.
KarkheckJ. & StellG. 1981 Mean field kinetic theories. J. Chem. Phys. 75, 14751487.
KarniadakisG., BeskokA. & AluruN. R. 2005 Microflows and Manoflows: Fundamentals and Simulations. Springer.
KnudsenM. 1909 Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren. Ann. Phys. 333, 75130.
KonM., KobayashiK. & WatanabeM. 2014 Method of determining kinetic boundary conditions in net evaporation/condensation. Phys. Fluids 26, 072003.
LunatiI. & LeeS. H. 2014 A dual-tube model for gas dynamics in fractured nanoporous shale formations. J. Fluid Mech. 757, 943971.
LutskoJ. F. 2005 Transport properties of dense dissipative hard-sphere fluids for arbitrary energy loss models. Phys. Rev. E 72, 021306.
MaJ., SanchezJ. P., WuK., CouplesG. D. & JiangZ. 2014 A pore network model for simulating non-ideal gas flow in micro- and nano-porous materials. Fuel 116, 498508.
MehmaniA., ProdanovićM. & JavadpourF. 2013 Multiscale, multiphysics network modeling of shale matrix gas flows. Transp. Porous Med. 88, 377390.
MengJ. P., WuL., ReeseJ. M. & ZhangY. 2013 Assessment of the ellipsoidal-statistical Bhatnagar–Gross–Krook model for force-driven Poiseuille flows. J. Comput. Phys. 251, 383395.
OhwadaT., SoneY. & AokiK 1989a Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard sphere molecules. Phys. Fluids 1, 20422049.
OhwadaT., SoneY. & AokiK. 1989b Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearzied Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1, 15881599.
SanchezI. C. 1994 Virial coefficients and close-packing of hard spheres and discs. J. Chem. Phys. 101, 70037006.
TakataS. & FunaganeH. 2011 Poiseuille and thermal transpiration flows of a highly rarefied gas: over-concentration in the velocity distribution function. J. Fluid Mech. 669, 242259.
TijM. & SantosA. 2004 Poiseuille flow in a heated granular gas. J. Stat. Phys. 117, 901928.
WangQ., ChenX., JhaA. & RogersH. 2014 Natural gas from shale formation – the evolution, evidences and challenges of shale gas revolution in United States. Renew. Sust. Energ. Rev. 30, 128.
WuL., ZhangY. & ReeseJ. M. 2015 Fast spectral solution of the generalized Enskog equation for dense gases. J. Comput. Phys. 303, 6679.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 19
Total number of PDF views: 240 *
Loading metrics...

Abstract views

Total abstract views: 456 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.