Skip to main content Accessibility help
×
Home

Non-equilibrium effects on flow past a circular cylinder in the slip and early transition regime

  • Xiao-Jun Gu (a1), Robert W. Barber (a1), Benzi John (a1) and David R. Emerson (a1)

Abstract

This paper presents a comprehensive investigation into flow past a circular cylinder where compressibility and rarefaction effects play an important role. The study focuses on steady subsonic flow in the Reynolds-number range 0.1–45. Rarefaction, or non-equilibrium, effects in the slip and early transition regime are accounted for using the method of moments and results are compared to data from kinetic theory obtained from the direct simulation Monte Carlo method. Solutions obtained for incompressible continuum flow serve as a baseline to examine non-equilibrium effects on the flow features. For creeping flow, where the Reynolds number is less than unity, the drag coefficient predicted by the moment equations is in good agreement with kinetic theory for Knudsen numbers less than one. When flow separation occurs, we show that the effects of rarefaction and velocity slip delay flow separation and will reduce the size of the vortices downstream of the cylinder. When the Knudsen number is above 0.028, the vortex length shows an initial increase with the Reynolds number, as observed in the standard no-slip continuum regime. However, once the Reynolds number exceeds a critical value, the size of the downstream vortices decreases with increasing Reynolds number until they disappear. An existence criterion, which identifies the limits for the presence of the vortices, is proposed. The flow physics around the cylinder is further analysed in terms of velocity slip, pressure and skin friction coefficients, which highlights that viscous, rarefaction and compressibility effects all play a complex role. We also show that the local Knudsen number, which indicates the state of the gas around the cylinder, can differ significantly from its free-stream value and it is essential that computational studies of subsonic gas flows in the slip and early transition regime are able to account for these strong non-equilibrium effects.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Non-equilibrium effects on flow past a circular cylinder in the slip and early transition regime
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Non-equilibrium effects on flow past a circular cylinder in the slip and early transition regime
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Non-equilibrium effects on flow past a circular cylinder in the slip and early transition regime
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: xiaojun.gu@stfc.ac.uk

References

Hide All
Acrivos, A., Leal, L. G., Snowden, D. D. & Pan, F. 1968 Further experiments on steady separated flows past bluff objects. J. Fluid Mech. 34, 2548.
Allen, M. P. & Tildesley, D. J. 1987 Computer Simulation of Liquids. Clarendon Press.
Apelt, C. J.1961 The steady flow of a viscous fluid past a circular cylinder at Reynolds numbers 40 and 44. R.&M. no. 3175. A.R.C. Technical Report. Her Majesty’s Stationery Office.
Ashley, H. 1949 Applications of the theory of free molecule flow to aeronautics. J. Aeronaut. Sci. 16, 95104.
Bairstow, L., Cave, B. M. & Lang, E. D. 1922 The two-dimensional slow motion of viscous fluids. Proc. R. Soc. Lond. A 100, 394413.
Baker, L. L. & Hadjiconstantinou, N. G. 2005 Variance reduction for Monte Carlo solutions of the Boltzmann equation. Phys. Fluids 17, 051703.
Barber, R. W., Sun, Y., Gu, X. J. & Emerson, D. R. 2004 Isothermal slip flow over curved surfaces. Vacuum 76 (1), 7381.
Basset, A. B. 1888 A Treatise on Hydrodynamics, vol. 2. George Bell and Sons.
Bird, G. 1963 Approach to translational equilibrium in a rigid sphere gas. Phys. Fluids 6, 15181519.
Bird, G. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press.
Canuto, D. & Taira, K. 2015 Two-dimensional compressible viscous flow around a circular cylinder. J. Fluid Mech. 785, 349371.
Cercignani, C. 1975 Theory and Application of the Boltzmann Equation. Scottish Academic Press.
Cercignani, C. 2000 Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations. Cambridge University Press.
Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Non-uniform Gases. Cambridge University Press.
Coutanceau, M. & Bouard, R. 1977 Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. J. Fluid Mech. 79, 231256.
Dennis, S. C. R. & Chang, G.-Z. 1970 Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. J. Fluid Mech. 40, 471.
Dennis, S. C. R. & Shimshoni, M.1965 The steady flow of a viscous fluid past a circular cylinder. C.P. No. 797. Her Majesty’s Stationery Office.
Epstein, P. S. 1924 On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23, 710733.
Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics, 3rd edn. Springer.
Fornberg, B. 1980 A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 98, 819855.
Gad-el-Hak, M. 1999 The fluid mechanics of microdevices: the Freeman Scholar Lecture. J. Fluids Engng 121, 533.
Gallis, M. A., Bitter, N. P., Koehler, T. P., Torczynski, J. R., Plimpton, S. J. & Papadakis, G. 2017 Molecular-level simulations of turbulence and its decay. Phys. Rev. Lett. 118, 064501.
Gallis, M. A., Koehler, T. P., Torczynski, J. R. & Plimpton, S. J. 2016 Direct simulation Monte Carlo investigation of the Rayleigh–Taylor instability. Phys. Rev. Fluids 1, 043403.
Gallis, M. A., Torczynski, J. R., Plimpton, S. J., Rader, D. J. & Koehler, T. P. 2014 Direct simulation Monte Carlo: the quest for speed. In 29th International Symposium on Rarefied Gas Dynamics (ed. Fan, J. & Sun, Q.), AIP Conference Proceedings, vol. 1628, pp. 2736. American Institute of Physics.
Grad, H. 1949 On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths 2, 331407.
Gu, X. J. & Emerson, D. R. 2007 A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions. J. Comput. Phys. 225, 263283.
Gu, X. J. & Emerson, D. R. 2009 A high-order moment approach for capturing non-equilibrium phenomena in the transition regime. J. Fluid Mech. 636, 177216.
Gu, X. J. & Emerson, D. R. 2011 Modeling oscillatory flows in the transition regime using a high-order moment method. Microfluid. Nanofluid. 10, 389401.
Gu, X. J. & Emerson, D. R. 2014 Linearized-moment analysis of the temperature jump and temperature defect in the Knudsen layer of a rarefied gas. Phys. Rev. E 89, 063020.
Gu, X. J., Emerson, D. R. & Tang, G. H. 2009 Kramers’ problem and the Knudsen minimum: a theoretical analysis using a linearized 26-moment approach. Contin. Mech. Thermodyn. 21, 345.
Gu, X. J., Emerson, D. R. & Tang, G. H. 2010 Analysis of the slip coefficient and defect velocity in the Knudsen layer of a rarefied gas using the linearized moment equations. Phys. Rev. E 81, 016313.
Gu, X. J., Zhang, H. & Emerson, D. R. 2016 A new extended Reynolds equation for gas bearing lubrication based on the method of moments. Microfluid. Nanofluid. 20, 23.
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. Martinus Nijhoff.
Heineman, M. 1948 Theory of drag in highly rarefied gases. Commun. Pure Appl. Maths 1, 259273.
Hirsch, C. 1991 Numerical Computation of Internal and External Flows II. Wiley.
Hu, Y., Sun, Q. H. & Fan, J. 2009 Simulation of gas flow over a micro cylinder. Proceedings of the ASME 2nd Micro/Nanoscale Heat & Mass Transfer Inter. Conf., MNHMT2009-18288, Dec. 18–21, 2009, Shanghai, China.
Huner, B. & Hussey, R. G. 1977 Cylinder drag at low Reynolds number. Phys. Fluids 20, 12111218.
John, B., Gu, X. J., Barber, R. W. & Emerson, D. R. 2016 High-speed rarefied flow past a rotating cylinder: the inverse Magnus effect. AIAA J 54, 16701681.
John, B., Gu, X. J. & Emerson, D. R. 2010 Investigation of heat and mass transfer in a lid-driven cavity under nonequilibrium flow conditions. Numer. Heat Transfer B 58, 287303.
Kaplun, S. 1957 Low Reynolds number flow past a circular cylinder. J. Math. Mech. 6, 595603.
Kawaguti, M. & Jain, P. 1966 Numerical study of a viscous fluid flow past a circular cylinder. J. Phys. Soc. Japan 21, 20552062.
Keller, J. B. & Ward, M. J. 1996 Asymptotics beyond all orders for a low Reynolds number flow. J. Math. Mech. 30, 253265.
Kumar, B. & Mittal, S. 2006 Prediction of the critical Reynolds number for flow past a circular cylinder. Comput. Meth. Appl. Mech. Engng 195, 60466058.
Lamb, H. 1911 On the uniform motion of a sphere through a viscous fluid. Phil. Mag. 21, 112121.
Li, Z. H., Peng, A. P., Zhang, H. X. & Deng, X. G. 2011 Numerical study on the gas-kinetic high-order schemes for solving Boltzmann model equation. Sci. China Phys. Mech. Astron. 54, 16871701.
Lockerby, D. A., Reese, J. M., Emerson, D. R. & Barber, R. W. 2004 Velocity boundary condition at solid walls in rarefied gas calculations. Phys. Rev. E 70 (1), 017303.
Lu, Y. B., Tang, G. H., Sheng, Q., Gu, X. J., Emerson, D. R. & Zhang, Y. H. 2017 Knudsen’s permeability correction for gas flow in tight porous media using the R26 moment method. J. Porous Media 20, 787805.
Maslach, G. I. & Schaaf, S. A. 1963 Cylinder drag in the transition from continuum to free-molecular flow. Phys. Fluids 6, 315321.
Maxwell, J. C. 1879 On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lond. A 170, 231256.
Muller, I. & Ruggeri, T. 1993 Extended Thermodynamics. Springer.
Munday, P. M., Taira, K., Suwa, T., Numata, D. & Asai, K. 2015 Nonlinear lift on a triangular airfoil in low-Reynolds-number compressible flow. J. Aircraft 52, 924931.
Oseen, C. W. 1910 Über die Stokessche Formel und über die verwandte Aufgabe in der Hydrodynamik. Ark. Mat. Astron. Fys. 6, 143152.
Pich, J. 1969 The drag of cylinder in the transition region, 1969. J. Colloid Interface Sci. 29, 9196.
Plimpton, S. J. & Gallis, M. A.2017 SPARTA Direct Simulation Monte Carlo (DSMC) Simulator. Sandia National Laboratories, USA, see http://sparta.sandia.gov.
Ponomarev, V. Y. & Filippova, N. A. 1969 Experimental study of cylinder drag in a rarefied gas. Fluid Dyn. 4, 113114.
Proudman, I. & Pearson, J. R. A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2, 237262.
Rajani, B. N. A., Kandasamy, A. & Majumdar, S. 2009 Numerical simulation of laminar flow past a circular cylinder. Appl. Math. Model. 33, 12281247.
Schaaf, S. A. & Chambre, P. L. 1961 Flow of Rarefied Gases. Princeton University Press.
Sen, S., Mittal, S. & Biswas, G. 2009 Steady separated flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 620, 89119.
Sentman, L. H.1961 Free molecule flow theory and its application to the determination of aerodynamic forces, LMSC-448514, Lockheed Missiles & Space Company.
Sheng, Q., Tang, G. H., Gu, X. J., Emerson, D. R. & Zhang, Y. H. 2014 Simulation of thermal transpiration flow using a high-order moment method. Intl J. Mod. Phys. C 25, 1450061.
Skinner, L. A. 1975 Generalized expansions for slow flow past a cylinder. Q. J. Mech. Appl. Maths 28, 333340.
Son, J. S. & Hanratty, T. J. 1969 Numerical solution for the flow around a cylinder at Reynolds numbers of 40, 200 and 500. J. Fluid Mech. 35, 369386.
Sone, Y. 2000 Flows induced by temperature fields in a rarefied gas and their ghost effect on the behavior of a gas in the continuum limit. Annu. Rev. Fluid Mech. 32, 779811.
Stalder, J. R., Goodwin, G. & Creager, M. O.1951 A comparison of theory and experiment for high-speed free-molecule flow. NACA-TR-1032, National Advisory Committee for Aeronautics. Ames Aeronautical Lab., Moffett Field, CA.
Stokes, G. G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8106.
Strouhal, V. 1878 Über eine besondere Art der Tonerregung. Ann. Phys. Chem. 5 (10), 216251.
Struchtrup, H. 2005 Macroscopic Transport Equations for Rarefied Gas Flows. Springer.
Struchtrup, H. & Torrilhon, M. 2003 Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15, 26682680.
Sun, Q. & Boyd, I. D. 2004 Drag on a flat plate in low-Reynolds-number gas flows. AIAA J 42, 10661072.
Taheri, P. & Struchtrup, H. 2009 Effects of rarefaction in microflows between coaxial cylinders. Phys. Rev. E 80, 066317.
Taheri, P. & Struchtrup, H. 2010 An extended macroscopic transport model for rarefied gas flows in long capillaries with circular cross section. Phys. Fluids 22, 112004.
Taheri, P., Torrilhon, M. & Struchtrup, H. 2009 Couette and Poiseuille microflows: analytical solutions for regularized 13-moment equations. Phys. Fluids 21, 017102.
Takami, H. & Keller, H. B. 1969 Steady two dimensional viscous flow of an incompressible fluid past a circular cylinder. Phys. Fluids 12, II-51.
Taneda, S. 1956 Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers. J. Phys. Soc. Japan 11, 302307.
Tang, G. H., Zhai, G. X., Tao, W. Q., Gu, X. J. & Emerson, D. R. 2013 Extended thermodynamic approach for non-equilibrium gas flow. Commun. Comput. Phys. 13, 13301356.
Truesdell, C. & Muncaster, R. G. 1980 Fundamentals of Maxwell’s Kinetic Theory of a Simple Monotomic Gas. Academic Press.
Tritton, D. J. 1959 Experiments on the flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 6, 547567.
Tritton, D. J. 1988 Physical Fluid Dynamics. Oxford University Press.
Tsien, H.-S. 1946 Superaerodynamics, mechanics of rarefied gases. J. Aeronaut Sci. 13, 653664.
Underwood, R. L. 1969 Calculation of incompressible flow past a circular cylinder at moderate Reynolds numbers. J. Fluid Mech. 37, 95114.
Volkov, A. N. & Sharipov, F. 2017 Flow of a monatomic rarefied gas over a circular cylinder: calculations based on the ab initio potential method. Intl J. Heat Mass Transfer 114, 4761.
Westerkamp, A. & Torrilhon, M. 2012 Slow rarefied gas flow past a cylinder: analytical solution in comparison to the sphere. AIP Conf. Proc. 1501 (1), 207214.
White, F. M. 1991 Viscous Fluid Flow. McGraw-Hill.
Wu, L., Ho, M. T., Germanou, L., Gu, X. J., Liu, C., Xu, K. & Zhang, Y. H. 2017 On the apparent permeability of porous media in rarefied gas flows. J. Fluid Mech. 822, 398417.
Wu, M.-H., Wen, C.-Y., Yen, R.-H., Weng, M.-C. & Wang, A.-B. 2004 Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number. J. Fluid Mech. 515, 233260.
Yamamoto, K. & Sera, K. 1985 Flow of a rarefied gas past a circular cylinder. Phys. Fluids 28, 12861293.
Young, J. B. 2011 Calculation of Knudsen layers and jump conditions using the linearised G13 and R13 moment methods. Intl J. Heat Mass Transfer 54, 29022912.
Zdravkovich, M. 1997 Flow around Circular Cylinders, vol. 1. Oxford Science.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed