Acrivos, A., Leal, L. G., Snowden, D. D. & Pan, F.
1968
Further experiments on steady separated flows past bluff objects. J. Fluid Mech.
34, 25–48.
Allen, M. P. & Tildesley, D. J.
1987
Computer Simulation of Liquids. Clarendon Press.
Apelt, C. J.1961 The steady flow of a viscous fluid past a circular cylinder at Reynolds numbers 40 and 44. R.&M. no. 3175. A.R.C. Technical Report. Her Majesty’s Stationery Office.
Ashley, H.
1949
Applications of the theory of free molecule flow to aeronautics. J. Aeronaut. Sci.
16, 95–104.
Bairstow, L., Cave, B. M. & Lang, E. D.
1922
The two-dimensional slow motion of viscous fluids. Proc. R. Soc. Lond. A
100, 394–413.
Baker, L. L. & Hadjiconstantinou, N. G.
2005
Variance reduction for Monte Carlo solutions of the Boltzmann equation. Phys. Fluids
17, 051703.
Barber, R. W., Sun, Y., Gu, X. J. & Emerson, D. R.
2004
Isothermal slip flow over curved surfaces. Vacuum
76 (1), 73–81.
Basset, A. B.
1888
A Treatise on Hydrodynamics, vol. 2. George Bell and Sons.
Bird, G.
1963
Approach to translational equilibrium in a rigid sphere gas. Phys. Fluids
6, 1518–1519.
Bird, G.
1994
Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press.
Canuto, D. & Taira, K.
2015
Two-dimensional compressible viscous flow around a circular cylinder. J. Fluid Mech.
785, 349–371.
Cercignani, C.
1975
Theory and Application of the Boltzmann Equation. Scottish Academic Press.
Cercignani, C.
2000
Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations. Cambridge University Press.
Chapman, S. & Cowling, T. G.
1970
The Mathematical Theory of Non-uniform Gases. Cambridge University Press.
Coutanceau, M. & Bouard, R.
1977
Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. J. Fluid Mech.
79, 231–256.
Dennis, S. C. R. & Chang, G.-Z.
1970
Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. J. Fluid Mech.
40, 471.
Dennis, S. C. R. & Shimshoni, M.1965 The steady flow of a viscous fluid past a circular cylinder. C.P. No. 797. Her Majesty’s Stationery Office.
Epstein, P. S.
1924
On the resistance experienced by spheres in their motion through gases. Phys. Rev.
23, 710–733.
Ferziger, J. H. & Perić, M.
2002
Computational Methods for Fluid Dynamics, 3rd edn. Springer.
Fornberg, B.
1980
A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech.
98, 819–855.
Gad-el-Hak, M.
1999
The fluid mechanics of microdevices: the Freeman Scholar Lecture. J. Fluids Engng
121, 5–33.
Gallis, M. A., Bitter, N. P., Koehler, T. P., Torczynski, J. R., Plimpton, S. J. & Papadakis, G.
2017
Molecular-level simulations of turbulence and its decay. Phys. Rev. Lett.
118, 064501.
Gallis, M. A., Koehler, T. P., Torczynski, J. R. & Plimpton, S. J.
2016
Direct simulation Monte Carlo investigation of the Rayleigh–Taylor instability. Phys. Rev. Fluids
1, 043403.
Gallis, M. A., Torczynski, J. R., Plimpton, S. J., Rader, D. J. & Koehler, T. P.
2014
Direct simulation Monte Carlo: the quest for speed. In 29th International Symposium on Rarefied Gas Dynamics (ed. Fan, J. & Sun, Q.), AIP Conference Proceedings, vol. 1628, pp. 27–36. American Institute of Physics.
Grad, H.
1949
On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths
2, 331–407.
Gu, X. J. & Emerson, D. R.
2007
A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions. J. Comput. Phys.
225, 263–283.
Gu, X. J. & Emerson, D. R.
2009
A high-order moment approach for capturing non-equilibrium phenomena in the transition regime. J. Fluid Mech.
636, 177–216.
Gu, X. J. & Emerson, D. R.
2011
Modeling oscillatory flows in the transition regime using a high-order moment method. Microfluid. Nanofluid.
10, 389–401.
Gu, X. J. & Emerson, D. R.
2014
Linearized-moment analysis of the temperature jump and temperature defect in the Knudsen layer of a rarefied gas. Phys. Rev. E
89, 063020.
Gu, X. J., Emerson, D. R. & Tang, G. H.
2009
Kramers’ problem and the Knudsen minimum: a theoretical analysis using a linearized 26-moment approach. Contin. Mech. Thermodyn.
21, 345.
Gu, X. J., Emerson, D. R. & Tang, G. H.
2010
Analysis of the slip coefficient and defect velocity in the Knudsen layer of a rarefied gas using the linearized moment equations. Phys. Rev. E
81, 016313.
Gu, X. J., Zhang, H. & Emerson, D. R.
2016
A new extended Reynolds equation for gas bearing lubrication based on the method of moments. Microfluid. Nanofluid.
20, 23.
Happel, J. & Brenner, H.
1983
Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. Martinus Nijhoff.
Heineman, M.
1948
Theory of drag in highly rarefied gases. Commun. Pure Appl. Maths
1, 259–273.
Hirsch, C.
1991
Numerical Computation of Internal and External Flows II. Wiley.
Hu, Y., Sun, Q. H. & Fan, J.
2009
Simulation of gas flow over a micro cylinder. Proceedings of the ASME 2nd Micro/Nanoscale Heat & Mass Transfer Inter. Conf., MNHMT2009-18288, Dec. 18–21, 2009, Shanghai, China.
Huner, B. & Hussey, R. G.
1977
Cylinder drag at low Reynolds number. Phys. Fluids
20, 1211–1218.
John, B., Gu, X. J., Barber, R. W. & Emerson, D. R.
2016
High-speed rarefied flow past a rotating cylinder: the inverse Magnus effect. AIAA J
54, 1670–1681.
John, B., Gu, X. J. & Emerson, D. R.
2010
Investigation of heat and mass transfer in a lid-driven cavity under nonequilibrium flow conditions. Numer. Heat Transfer B
58, 287–303.
Kaplun, S.
1957
Low Reynolds number flow past a circular cylinder. J. Math. Mech.
6, 595–603.
Kawaguti, M. & Jain, P.
1966
Numerical study of a viscous fluid flow past a circular cylinder. J. Phys. Soc. Japan
21, 2055–2062.
Keller, J. B. & Ward, M. J.
1996
Asymptotics beyond all orders for a low Reynolds number flow. J. Math. Mech.
30, 253–265.
Kumar, B. & Mittal, S.
2006
Prediction of the critical Reynolds number for flow past a circular cylinder. Comput. Meth. Appl. Mech. Engng
195, 6046–6058.
Lamb, H.
1911
On the uniform motion of a sphere through a viscous fluid. Phil. Mag.
21, 112–121.
Li, Z. H., Peng, A. P., Zhang, H. X. & Deng, X. G.
2011
Numerical study on the gas-kinetic high-order schemes for solving Boltzmann model equation. Sci. China Phys. Mech. Astron.
54, 1687–1701.
Lockerby, D. A., Reese, J. M., Emerson, D. R. & Barber, R. W.
2004
Velocity boundary condition at solid walls in rarefied gas calculations. Phys. Rev. E
70 (1), 017303.
Lu, Y. B., Tang, G. H., Sheng, Q., Gu, X. J., Emerson, D. R. & Zhang, Y. H.
2017
Knudsen’s permeability correction for gas flow in tight porous media using the R26 moment method. J. Porous Media
20, 787–805.
Maslach, G. I. & Schaaf, S. A.
1963
Cylinder drag in the transition from continuum to free-molecular flow. Phys. Fluids
6, 315–321.
Maxwell, J. C.
1879
On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lond. A
170, 231–256.
Muller, I. & Ruggeri, T.
1993
Extended Thermodynamics. Springer.
Munday, P. M., Taira, K., Suwa, T., Numata, D. & Asai, K.
2015
Nonlinear lift on a triangular airfoil in low-Reynolds-number compressible flow. J. Aircraft
52, 924–931.
Oseen, C. W.
1910
Über die Stokessche Formel und über die verwandte Aufgabe in der Hydrodynamik. Ark. Mat. Astron. Fys.
6, 143–152.
Pich, J.
1969
The drag of cylinder in the transition region, 1969. J. Colloid Interface Sci.
29, 91–96.
Plimpton, S. J. & Gallis, M. A.2017 SPARTA Direct Simulation Monte Carlo (DSMC) Simulator. Sandia National Laboratories, USA, see http://sparta.sandia.gov.
Ponomarev, V. Y. & Filippova, N. A.
1969
Experimental study of cylinder drag in a rarefied gas. Fluid Dyn.
4, 113–114.
Proudman, I. & Pearson, J. R. A.
1957
Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech.
2, 237–262.
Rajani, B. N. A., Kandasamy, A. & Majumdar, S.
2009
Numerical simulation of laminar flow past a circular cylinder. Appl. Math. Model.
33, 1228–1247.
Schaaf, S. A. & Chambre, P. L.
1961
Flow of Rarefied Gases. Princeton University Press.
Sen, S., Mittal, S. & Biswas, G.
2009
Steady separated flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech.
620, 89–119.
Sentman, L. H.1961 Free molecule flow theory and its application to the determination of aerodynamic forces, LMSC-448514, Lockheed Missiles & Space Company.
Sheng, Q., Tang, G. H., Gu, X. J., Emerson, D. R. & Zhang, Y. H.
2014
Simulation of thermal transpiration flow using a high-order moment method. Intl J. Mod. Phys. C
25, 1450061.
Skinner, L. A.
1975
Generalized expansions for slow flow past a cylinder. Q. J. Mech. Appl. Maths
28, 333–340.
Son, J. S. & Hanratty, T. J.
1969
Numerical solution for the flow around a cylinder at Reynolds numbers of 40, 200 and 500. J. Fluid Mech.
35, 369–386.
Sone, Y.
2000
Flows induced by temperature fields in a rarefied gas and their ghost effect on the behavior of a gas in the continuum limit. Annu. Rev. Fluid Mech.
32, 779–811.
Stalder, J. R., Goodwin, G. & Creager, M. O.1951 A comparison of theory and experiment for high-speed free-molecule flow. NACA-TR-1032, National Advisory Committee for Aeronautics. Ames Aeronautical Lab., Moffett Field, CA.
Stokes, G. G.
1851
On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc.
9, 8–106.
Strouhal, V.
1878
Über eine besondere Art der Tonerregung. Ann. Phys. Chem.
5 (10), 216–251.
Struchtrup, H.
2005
Macroscopic Transport Equations for Rarefied Gas Flows. Springer.
Struchtrup, H. & Torrilhon, M.
2003
Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids
15, 2668–2680.
Sun, Q. & Boyd, I. D.
2004
Drag on a flat plate in low-Reynolds-number gas flows. AIAA J
42, 1066–1072.
Taheri, P. & Struchtrup, H.
2009
Effects of rarefaction in microflows between coaxial cylinders. Phys. Rev. E
80, 066317.
Taheri, P. & Struchtrup, H.
2010
An extended macroscopic transport model for rarefied gas flows in long capillaries with circular cross section. Phys. Fluids
22, 112004.
Taheri, P., Torrilhon, M. & Struchtrup, H.
2009
Couette and Poiseuille microflows: analytical solutions for regularized 13-moment equations. Phys. Fluids
21, 017102.
Takami, H. & Keller, H. B.
1969
Steady two dimensional viscous flow of an incompressible fluid past a circular cylinder. Phys. Fluids
12, II-51.
Taneda, S.
1956
Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers. J. Phys. Soc. Japan
11, 302–307.
Tang, G. H., Zhai, G. X., Tao, W. Q., Gu, X. J. & Emerson, D. R.
2013
Extended thermodynamic approach for non-equilibrium gas flow. Commun. Comput. Phys.
13, 1330–1356.
Truesdell, C. & Muncaster, R. G.
1980
Fundamentals of Maxwell’s Kinetic Theory of a Simple Monotomic Gas. Academic Press.
Tritton, D. J.
1959
Experiments on the flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech.
6, 547–567.
Tritton, D. J.
1988
Physical Fluid Dynamics. Oxford University Press.
Tsien, H.-S.
1946
Superaerodynamics, mechanics of rarefied gases. J. Aeronaut Sci.
13, 653–664.
Underwood, R. L.
1969
Calculation of incompressible flow past a circular cylinder at moderate Reynolds numbers. J. Fluid Mech.
37, 95–114.
Volkov, A. N. & Sharipov, F.
2017
Flow of a monatomic rarefied gas over a circular cylinder: calculations based on the ab initio potential method. Intl J. Heat Mass Transfer
114, 47–61.
Westerkamp, A. & Torrilhon, M.
2012
Slow rarefied gas flow past a cylinder: analytical solution in comparison to the sphere. AIP Conf. Proc.
1501 (1), 207–214.
White, F. M.
1991
Viscous Fluid Flow. McGraw-Hill.
Wu, L., Ho, M. T., Germanou, L., Gu, X. J., Liu, C., Xu, K. & Zhang, Y. H.
2017
On the apparent permeability of porous media in rarefied gas flows. J. Fluid Mech.
822, 398–417.
Wu, M.-H., Wen, C.-Y., Yen, R.-H., Weng, M.-C. & Wang, A.-B.
2004
Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number. J. Fluid Mech.
515, 233–260.
Yamamoto, K. & Sera, K.
1985
Flow of a rarefied gas past a circular cylinder. Phys. Fluids
28, 1286–1293.
Young, J. B.
2011
Calculation of Knudsen layers and jump conditions using the linearised G13 and R13 moment methods. Intl J. Heat Mass Transfer
54, 2902–2912.
Zdravkovich, M.
1997
Flow around Circular Cylinders, vol. 1. Oxford Science.