Skip to main content

Oblique internal-wave chain resonance over seabed corrugations

  • Louis-Alexandre Couston (a1) (a2), Yong Liang (a3) and Mohammad-Reza Alam (a1) (a3)

Here we show that monochromatic long-crested corrugations on an otherwise flat seafloor can coherently scatter the energy of an oblique incident internal wave to multiple multi-directional higher-mode internal waves via a series of resonant interactions. We demonstrate that a resonance between seabed corrugations and a normally or slightly oblique incident internal wave results in a series of follow-up resonant interactions, which take place between the same corrugations and successively resonated shorter waves. A chain resonance of internal waves that carries energy to small scales is thus obtained, and we find that the Richardson number decreases by several orders of magnitude over the corrugated patch. If the incidence angle is large, and the incident wave perfectly satisfies a resonance condition with the topography, it turns out that not many higher-mode resonance or near-resonance conditions can be satisfied, such that energy stays confined within the first few modes. Nevertheless, if the incident waves are sufficiently detuned from satisfying a perfect resonance condition with the seabed corrugations, then we show that this frequency detuning may balance off the large detuning due to oblique incidence, leading to a chain resonance that again carries energy to small scales. The evolution of the incident and resonated wave amplitudes is predicted from the envelope equation for internal waves over resonant seabed topography in a three-dimensional rotating fluid, which we derive considering the Boussinesq and $f$ -plane approximations with $f$ the Coriolis frequency, linear density stratification and small-amplitude corrugations. Our results suggest that topographic features on the ocean floor with a well-defined dominant wavenumber vector, through the chain resonance mechanism elucidated here, may play a more important role than previously thought in the enhancement of diapycnal mixing and energy dissipation.

Corresponding author
Email address for correspondence:
Hide All
Alam, M.-R. 2012 A new triad resonance between co-propagating surface and interfacial waves. J. Fluid Mech. 691, 267278.
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2009 Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part I. Perturbation analysis. J. Fluid Mech. 624, 191224.
Alam, M.-R. & Mei, C. C. 2007 Attenuation of long interfacial waves over a randomly rough seabed. J. Fluid Mech. 587, 7396.
Alford, M. H., MacKinnon, J. A., Zhao, Z., Pinkel, R., Klymak, J. & Peacock, T. 2007 Internal waves across the Pacific. Geophys. Res. Lett. 34 (24), 27.
Alford, M. H. & Zhao, Z. 2007 Global patterns of low-mode internal-wave propagation. Part I: energy and energy flux. J. Phys. Oceanogr. 37, 18291848.
Balmforth, N. J., Ierley, G. R. & Young, W. R. 2002 Tidal conversion by subcritical topography. J. Phys. Oceanogr. 32 (10), 29002914.
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S-H. et al. 2009 Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod. 32 (4), 355371.
Bell, T. H. 1975a Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech. 67 (4), 705722.
Bell, T. H. 1975b Topographically generated internal waves in the open ocean. J. Geophys. Res. 80 (3), 320327.
Bühler, O. & Holmes-Cerfon, M. 2011 Decay of an internal tide due to random topography in the ocean. J. Fluid Mech. 678, 271293.
Bühler, O. & Muller, C. J. 2007 Instability and focusing of internal tides in the deep ocean. J. Fluid Mech. 588, 128.
Chen, E.2009 Degradation of the internal tide over long bumpy topography. Woods Hole GFDL Annual Proceedings 2009, pp. 248–268.
Couston, L.-A., Jalali, M. A. & Alam, M.-R. 2017 Shore protection by oblique seabed bars. J. Fluid Mech. 815, 481510.
Elandt, R. B., Shakeri, M. & Alam, M.-R. 2014 Surface gravity-wave lensing. Phys. Rev. E 89, 16.
Exarchou, E., Von Storch, J. S. & Jungclaus, J. H. 2012 Impact of tidal mixing with different scales of bottom roughness on the general circulation. Ocean Dyn. 62 (10–12), 15451563.
Fredholm, I. 1903 Sur une classe d’équations fonctionnelles. Acta Mathematica 27 (1), 365390.
Galperin, B., Sukoriansky, S. & Anderson, P. S. 2007 On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett. 8 (3), 6569.
Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39 (1), 5787.
Goff, J. A. & Arbic, B. K. 2010 Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness. Ocean Model. 32, 3643.
Goff, J. A. & Jordan, T. H. 1988 Stochastic modeling of seafloor morphology: inversion of sea beam data for second-order statistics. J. Geophys. Res. 93 (B11), 13589.
Guo, Y. & Holmes-Cerfon, M. 2016 Internal wave attractors over random, small-amplitude topography. J. Fluid Mech. 787, 148174.
Khatiwala, S. 2003 Generation of internal tides in an ocean of finite depth: analytical and numerical calculations. Deep-Sea Res. I 50, 321.
Ledwell, J. R., Montgomery, E. T., Polzin, K. L., St Laurent, L. C., Schmitt, R. W. & Toole, J. M. 2000 Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403, 179182.
Lefauve, A., Muller, C. & Melet, A. 2015 A three-dimensional map of tidal dissipation over abyssal hills. J. Geophys. Res. 120 (7), 47604777.
Legg, S. 2014 Scattering of low-mode internal waves at finite isolated topography. J. Phys. Oceanogr. 44, 359383.
Li, Y. & Mei, C. C. 2014 Scattering of internal tides by irregular bathymetry of large extent. J. Fluid Mech. 747, 481505.
Liu, Y. & Yue, D. K. P. 1998 On generalized Bragg scattering of surface waves by bottom ripples. J. Fluid Mech. 356, 297326.
Llewellyn Smith, S. G. & Young, W. R. 2002 Conversion of the barotropic tide. J. Phys. Oceanogr. 32 (5), 15541566.
Mack, S. A. & Schoeberlein, H. C. 2004 Richardson number and ocean mixing: towed chain observations. J. Phys. Oceanogr. 34 (4), 736754.
Mathur, M., Carter, G. S. & Peacock, T. 2014 Topographic scattering of the low-mode internal tide in the deep ocean. J. Geophys. Res. 119 (4), 21652182.
Mei, C. C. 1985 Resonant reflection of surface water waves by periodic sandbars. J. Fluid Mech. 152, 315335.
Müller, P. & Xu, N. 1992 Scattering of oceanic internal gravity waves off random bottom topography. J. Phys. Oceanogr. 22 (5), 474488.
Munk, W. & Wunsch, C. 1998 Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 45 (12), 19772010.
Nash, J. D., Alford, M. H., Kunze, E., Martini, K. & Kelly, S. 2007 Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett. 34 (L01605), 16.
Nikurashin, M. & Ferrari, R. 2010 Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: application to the southern ocean. J. Phys. Oceanogr. 40 (9), 20252042.
Polzin, K. L., Toole, J. M., Ledwell, J. R. & Schmitt, R. W. 1997 Spatial variability of turbulent mixing in the abyssal ocean. Science 276 (5309), 9396.
Sarkar, S. & Scotti, A. 2017 From topographic internal gravity waves to turbulence. Annu. Rev. Fluid Mech. 49, 195220.
Smith, W. H. F. & Sandwell, D. T. 1997 Global sea floor topography from satellite altimetry and ship depth soundings. Science 277 (5334), 19561962.
St Laurent, L. & Garrett, C. 2002 The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. 32, 28822899.
Staquet, C. & Sommeria, J. 2002 Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34, 559593.
Sutherland, B. R. 2010 Internal Gravity Waves. Cambridge University Press.
Thurnherr, A. M., St Laurent, L. C., Speer, K. G., Toole, J. M. & Ledwell, J. R. 2005 Mixing associated with sills in a canyon on the midocean ridge flank. J. Phys. Oceanogr. 35, 13701381.
Timko, P. G., Arbic, B. K., Goff, J. A., Ansong, J. K., Smith, W. H. F., Melet, A. & Wallcraft, A. J. 2017 Impact of synthetic abyssal hill roughness on resolved motions in numerical global ocean tide models. Ocean Model. 112, 116.
Tobisch, E. 2016 New Approaches to Nonlinear Waves. Springer, Heidelberg, lecture no edn.
Waterhouse, A. F., MacKinnon, J. A., Nash, J. D., Alford, M. H., Kunze, E., Simmons, H. L., Polzin, K. L., St Laurent, L. C., Sun, O. M., Pinkel, R. et al. 2014 Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 44 (7), 18541872.
Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36 (1), 281314.
Yu, J. & Howard, L. N. 2012 Exact floquet theory for waves over arbitrary periodic topographies. J. Fluid Mech. 712, 120.
Yu, J. & Mei, C. C. 2000a Do longshore bars shelter the shore? J. Fluid Mech. 404, 251268.
Yu, J. & Mei, C. C. 2000b Formation of sand bars under surface waves. J. Fluid Mech. 416, 315348.
Zhao, Z., Alford, M. H., Girton, J. B., Rainville, L. & Simmons, H. L. 2016 Global observations of open-ocean Mode-1 M2 internal tides. J. Phys. Oceanogr. 46 (6), 16571684.
Zhao, Z., Alford, M. H., MacKinnon, J. A. & Pinkel, R. 2010 Long-range propagation of the semidiurnal internal tide from the hawaiian ridge. J. Phys. Oceanogr. 40, 713736.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed