Skip to main content
×
Home

On coherent structure in wall turbulence

  • A. S. Sharma (a1) and B. J. McKeon (a2)
Abstract
Abstract

A new theory of coherent structure in wall turbulence is presented. The theory is the first to predict packets of hairpin vortices and other structure in turbulence, and their dynamics, based on an analysis of the Navier–Stokes equations, under an assumption of a turbulent mean profile. The assumption of the turbulent mean acts as a restriction on the class of possible structures. It is shown that the coherent structure is a manifestation of essentially low-dimensional flow dynamics, arising from a critical-layer mechanism. Using the decomposition presented in McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382), complex coherent structure is recreated from minimal superpositions of response modes predicted by the analysis, which take the form of radially varying travelling waves. The leading modes effectively constitute a low-dimensional description of the turbulent flow, which is optimal in the sense of describing the resonant effects around the critical layer and which minimally predicts all types of structure. The approach is general for the full range of scales. By way of example, simple combinations of these modes are offered that predict hairpins and modulated hairpin packets. The example combinations are chosen to represent observed structure, consistent with the nonlinear triadic interaction for wavenumbers that is required for self-interaction of structures. The combination of the three leading response modes at streamwise wavenumbers $6, ~1, ~7$ and spanwise wavenumbers $\pm 6, ~\pm 6, ~\pm 12$ , respectively, with phase velocity $2/ 3$ , is understood to represent a turbulence ‘kernel’, which, it is proposed, constitutes a self-exciting process analogous to the near-wall cycle. Together, these interactions explain how the mode combinations may self-organize and self-sustain to produce experimentally observed structure. The phase interaction also leads to insight into skewness and correlation results known in the literature. It is also shown that the very large-scale motions act to organize hairpin-like structures such that they co-locate with areas of low streamwise momentum, by a mechanism of locally altering the shear profile. These energetic streamwise structures arise naturally from the resolvent analysis, rather than by a summation of hairpin packets. In addition, these packets are modulated through a ‘beat’ effect. The relationship between Taylor’s hypothesis and coherence is discussed, and both are shown to be the consequence of the localization of the response modes around the critical layer. A pleasing link is made to the classical laminar inviscid theory, whereby the essential mechanism underlying the hairpin vortex is captured by two obliquely interacting Kelvin–Stuart (cat’s eye) vortices. Evidence for the theory is presented based on comparison with observations of structure in turbulent flow reported in the experimental and numerical simulation literature and with exact solutions reported in the transitional literature.

Copyright
Corresponding author
Email address for correspondence: a.sharma@soton.ac.uk
References
Hide All
Adrian R. J. 2007 Vortex organization in wall turbulence. Phys. Fluids 19, 041301.
Adrian R. J., Christensen K. T. & Liu Z.-C. 2000a Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275290.
Adrian R. J., Meinhart C. D. & Tomkins C. D. 2000b Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.
del Álamo J. C. & Jiménez J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.
Bailey S. C. C. & Smits A. J. 2009 The structure of large- and very large-scale motions in turbulent pipe flow. AIAA Paper 2009-3684.
Balakumar B. J. & Adrian R. J. 2007 Large- and very-large-scale motions in channel and boundary layer flows. Phil. Trans. R. Soc. Lond. A 365, 665681.
Bandyopadhyay P. R. & Hussain A. K. M. F. 1984 The coupling between scales in shear flows. Phys. Fluids 27 (9), 22212228.
Benney D. J. & Bergeron R. F. 1969 A new class of nonlinear waves in parallel flows. Stud. Appl. Maths 48, 181204.
Bourguignon J.-L. & McKeon B. J. 2011 A streamwise-constant model of turbulent pipe flow. Phys. Fluids 23, 095111.
Carlier J. & Stanislas M. 2005 Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535, 143188.
Chakraborty P., Balachandar S. & Adrian R. J. 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.
Chernyshenko S. I., Cicca G. M., Iollo A., Smirnov A. V., Sandham N. D. & Hu Z. W. 2006 Analysis of data on the relation between eddies and streaky structures in turbulent flows using the placebo method. Fluid Dyn. 41 (5), 772783.
Cherubini S., de Palma P., Robinet J.-C. & Bottaro A. 2011 Edge states in a boundary layer. Phys. Fluids 23 (5), 051705.
Chung D. & McKeon B. J. 2010 Large-eddy simulation investigation of large-scale structures in a long channel flow. J. Fluid Mech. 661, 341364.
Cossu C., Pujals G. & Depardon S. 2009 Optimal transient growth and very large-scale structures in turbulent boundary layers. J. Fluid Mech. 619, 7994.
Deguchi K & Nagata M 2010 Traveling hairpin-shaped fluid vortices in plane Couette flow. Phys. Rev. E 82, 056325.
Dennis D. & Nickels T. 2011a Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180217.
Dennis D. & Nickels T. 2011b Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J. Fluid Mech. 673, 218244.
Drazin P. G. & Reid W. H. 2004 Hydrodynamic Stability, 2nd edn. Cambridge University Press.
Duguet Y., Willis A. P. & Kerswell R. R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.
Duguet Y., Willis A. P. & Kerswell R. R. 2010 Slug genesis in cylindrical pipe flow. J. Fluid Mech. 663, 180208.
Eckhardt B., Schneider T. M., Hof B. & Westerweel J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39 (1), 447468.
Falco R. E. 1977 Coherent motions in the outer region of turbulent boundary layers. Phys. Fluids 20, S124S132.
Falco R. E. 1991 A coherent structure model of the turbulent boundary layer and its ability to predict Reynolds number dependence. Phil. Trans. R. Soc. Lond. A 336 (1641), 103129.
Ganapathisubramani B., Longmire E. K. & Marusic I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.
Gao Q., Ortiz-Dueñas C. & Longmire E. K. 2011 Analysis of vortex populations in turbulent wall-bounded flows. J. Fluid Mech. 678, 87123.
Gayme D. F., McKeon B. J., Papachristodolou A., Bamieh B. & Doyle J. C. 2010 Streamwise constant model of turbulence in plane Couette flow. J. Fluid Mech. 665, 99119.
Generalis S. C. & Itano T. 2010 Characterization of the hairpin vortex solution in plane Couette flow. Phys. Rev. E 82, 066308.
Gibson J. F., Halcrow J. & Cvitanović P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243266.
Guala M., Hommema S. E. & Adrian R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.
Hall P. & Sherwin S. J. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.
Head M. R. & Bandyopadhyay P. R. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297337.
Hellström L. H. O., Sinha A. & Smits A. J. 2011 Visualizing the very-large-scale motions in turbulent pipe flow. Phys. Fluids 23, 011703.
Hutchins N. & Marusic I. 2007a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Hutchins N. & Marusic I. 2007b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365, 647664.
Hutchins N., Monty J. P., Ganapathisubramani B., Ng H. C. H. & Marusic I. 2011 Three-dimensional conditional structure of a high-Reynolds number turbulent boundary layer. J. Fluid Mech. 673, 255285.
Itano T. & Generalis S. C. 2009 Hairpin vortex solution in planar Couette flow: a tapestry of knotted vortices. Phys. Rev. Lett. 102, 114501.
Jacobi I. & McKeon B. J. 2011 Dynamic roughness-perturbation of a turbulent boundary layer. J. Fluid Mech. 688, 258296.
Jacobi I. & McKeon B. J. 2013 Phase relationships between large and small scales in the turbulent boundary layer. Exp. Fluids 54, 1481.
Jeong J. & Hussain F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Kerswell R. R. 2005 Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18 (6), R17.
Kim K. C. & Adrian R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.
Klewicki J. C., Fife P., Wei T. & McMurtry P. 2007 A physical model of the turbulent boundary layer consonant with the mean momentum balance structure. Phil. Trans. R. Soc. Lond. A 365, 823839.
Lee J. H. & Sung H. J. 2011 Very-large-scale motions in a turbulent boundary layer. J. Fluid Mech. 673, 80120.
LeHew J., Guala M. & McKeon B. J. 2011 A study of the three-dimensional spectral energy distribution in a zero pressure gradient turbulent boundary layer. Exp. Fluids 51 (4), 9971012.
Marusic I., Mathis R. & Hutchins N. 2010 High Reynolds number effects in wall turbulence. Intl J. Heat Fluid Flow 31, 418428.
Maslowe S. A. 1986 Critical layers in shear flows. Annu. Rev. Fluid Mech. 18 (1), 405432.
Mathis R., Hutchins N. & Marusic I. 2009 Large-scale amplitude modulation of the small-scale structures of turbulent boundary layers. J. Fluid Mech. 628, 311337.
Mathis R., Marusic I., Hutchins N. & Sreenivasan K. R. 2011 The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers. Phys. Fluids 23, 121702.
McKeon B. J., Li J., Jiang W., Morrison J. F. & Smits A. J. 2004 Further observations on the mean velocity distribution in fully developed pipe flow. J. Fluid Mech. 501, 135147.
McKeon B. J. & Sharma A. S. 2010 A critical layer model for turbulent pipe flow. J. Fluid Mech. 658, 336382.
McKeon B. J., Sharma A. S. & Jacobi I. 2010Predicting structural and statistical features of wall turbulence. arXiv:1012.0426.
McKeon B. J., Jacobi I. & Sharma A. S. 2013 Experimental manipulation of wall turbulence: a systems approach. Phys. Fluids 25, 031301.
Meinhart C. D. & Adrian R. J. 1995 On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7 (4), 694696.
Meseguer A. & Trefethen L. N. 2003 Linearized pipe flow to Reynolds number inline-graphic $1{0}^{7} $ . J. Comput. Phys. 186, 178197.
Monty J. P., Hutchins N., Ng H. C. H., Marusic I. & Chong M. S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.
Monty J. P., Stewart J. A., Williams R. C. & Chong M. S. 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.
Morris S. C., Stolpa S. R., Slaboch P. E. & Klewicki J. 2007 Near-surface particle image velocimetry measurements in a transitionally rough-wall atmospheric boundary layer. J. Fluid Mech. 580, 319338.
Mullin T. 2011 Experimental studies of transition to turbulence in a pipe. Annu. Rev. Fluid Mech. 43 (1), 124.
Natrajan V. K., Wu Y. & Christensen K. T. 2007 Spatial signatures of retrograde spanwise vortices in wall turbulence. J. Fluid Mech. 574, 155167.
Perry A. E. & Chong M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech 119, 173217.
Perry A. E., Henbest S. & Chong M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 195, 163199.
Perry A. E. & Marusic I. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361388.
Pringle C. C. T., Duguet Y. & Kerswell R. R. 2009 Highly symmetric travelling waves in pipe flow. Phil. Trans. R. Soc. Lond. A 367, 457472.
Reddy S. C., Schmid P. J. & Henningson D. S. 1993 Pseudospectra of the Orr–Sommerfeld equation. SIAM J. Appl. Maths 53 (1), 1547.
Robinson S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.
Schlatter P. & Örlü R. 2010 Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution. Phys. Fluids 22, 051704.
Schlatter P., Örlu R., Li Q., Brethouwer G., Fransson J. H. M., Johansson A. V., Alfredsson P. H. & Henningson D. S. 2009 Simulations of spatially evolving turbulent boundary layers up to inline-graphic $R{e}_{\theta } = 4300$ . Intl J. Heat Fluid Flow 31, 251261.
Sharma A. S. & McKeon B. J. 2011 Very large-scale motions in pipe turbulence derived from a simple critical-layer model. In Seventh International Symposium on Turbulence and Shear Flow Phenomena (TSFP-7), Ottawa, Canada, 28–31 July. (online).
Smith F. T. & Bodonyi R. J. 1982 Amplitude-dependent neutral modes in the Hagen–Poiseille flow though a circular pipe. Proc. R. Soc. Lond. A 384, 463489.
Smith C. R., Walker J. D. A., Haidari A. H. & Sobrun U. 1991 On the dynamics of near-wall turbulence. Phil. Trans. R. Soc. Lond. 336, 131175.
Smits A. J., McKeon B. J. & Marusic I. 2011 High Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.
Theodorsen T. 1952 Mechanism of turbulence. In Proceedings of 2nd Midwestern Conference on Fluid Mechanics, Columbus, Ohio, pp. 119. Ohio State University.
Tomkins C. D. & Adrian R. J. 2005 Energetic spanwise modes in the logarithmic layer of a turbulent boundary layer. J. Fluid Mech. 545, 141162.
den Toonder J. M. J. & Nieuwstadt F. T. M. 1997 Reynolds number effects in a turbulent pipe flow for low to moderate Re . Phys. Fluids 9, 33983409.
Townsend A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Townsend A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Waleffe F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.
Waleffe F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15 (6), 15171534.
Wedin H & Kerswell R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.
Wu X., Baltzer J. R. & Adrian R. J. 2012 Direct numerical simulation of a inline-graphic $30R$ long turbulent pipe flow at inline-graphic ${R}^{+ } = 685$ : large- and very large-scale motions. J. Fluid Mech. 698, 235281.
Wu Y. & Christensen K. T. 2006 Population trends of spanwise vortices in wall turbulence. J. Fluid Mech. 568, 5576.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 271 *
Loading metrics...

Abstract views

Total abstract views: 626 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st November 2017. This data will be updated every 24 hours.