Skip to main content Accessibility help
×
×
Home

On reduced models for gravity waves generated by moving bodies

  • Philippe H. Trinh (a1)
Abstract

In 1983, Tulin published a report proposing a framework for reducing the equations for gravity waves generated by moving bodies into a single nonlinear differential equation solvable in closed form (Proceedings of the 14th Symposium on Naval Hydrodynamics, 1983, pp. 19–51). Several new and puzzling issues were highlighted by Tulin, notably the existence of weak and strong wave-making regimes, and the paradoxical fact that the theory seemed to be applicable to flows at low speeds, ‘but not too low speeds’. These important issues were left unanswered, and despite the novelty of the ideas, Tulin’s report fell into relative obscurity. Now, 30 years later, we will revive Tulin’s observations, and explain how an asymptotically consistent framework allows us to address these concerns. Most notably, we demonstrate, using the asymptotic method of steepest descents, how the production of free-surface waves can be related to the arrangement of integration contours connected to the shape of the moving body. This approach provides a new and powerful methodology for the study of geometrically nonlinear wave–body interactions.

Copyright
Corresponding author
Email address for correspondence: trinh@maths.ox.ac.uk
References
Hide All
Bennett, T.2015 Exponential asymptotics for integrals with degenerate and non-isolated critical points. PhD thesis, University of Southampton.
Berry, M. 1991 Asymptotics, superasymptotics, hyperasymptotics. In Asymptotics Beyond All Orders (ed. Segur, H.), pp. 114. Springer.
Berry, M. V. 1989 Stokes’ phenomenon; smoothing a Victorian discontinuity. Publ. Math. Inst. Hautes Études Sci. 68, 211221.
Bleistein, N. & Handelsman, R. A. 1975 Asymptotic Expansions of Integrals. Courier Dover Publications.
Boyd, J. P. 1998 Weakly Nonlocal Solitary Waves and Beyond-all-orders Asymptotics. Kluwer Academic Publishers.
Brandsma, F. J. & Hermans, A. J. 1985 A quasi-linear free surface condition in slow ship theory. Schiffstechnik Bd. 32, 2541.
Chapman, S. J., King, J. R. & Adams, K. L. 1998 Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations. Proc. R. Soc. Lond. A 454, 27332755.
Chapman, S. J. & Mortimer, D. B. 2005 Exponential asymptotics and Stokes lines in a partial differential equation. Proc. R. Soc. Lond. A 461 (2060), 23852421.
Chapman, S. J. & Vanden-Broeck, J.-M. 2002 Exponential asymptotics and capillary waves. SIAM J. Appl. Maths 62 (6), 18721898.
Chapman, S. J. & Vanden-Broeck, J.-M. 2006 Exponential asymptotics and gravity waves. J. Fluid Mech. 567, 299326.
Costin, O. 2008 Asymptotics and Borel Summability, vol. 141. Chapman & Hall/CRC.
Craig, W. & Sternberg, P. 1992 Symmetry of free-surface flows. Arch. Rat. Mech. Anal. 118 (1), 136.
Crew, S. C. & Trinh, P. H. 2016 New singularities for Stokes waves. J. Fluid Mech. 798, 256283.
Dagan, G. & Tulin, M. P. 1972 Two-dimensional free-surface gravity flow past blunt bodies. J. Fluid Mech. 51 (3), 529543.
Davies, T. V. 1951 The theory of symmetrical gravity waves of finite amplitude. I. Proc. R. Soc. Lond. A 208 (1095), 475486.
Dawson, C. W. 1977 A practical computer method for solving ship-wave problems. In 2nd International Conference of Numerical Ship Hydrodynamics, Berkeley, USA. University of California.
Doctors, L. J. & Dagan, G. 1980 Comparison of nonlinear wave-resistance theories for a two-dimensional pressure distribution. J. Fluid Mech. 98 (03), 647672.
Farrow, D. E. & Tuck, E. O. 1995 Further studies of stern wavemaking. J. Austral. Math. Soc. B 36, 424437.
Howls, C. J., Langman, P. J. & Daalhuis, A. B. Olde 2004 On the higher-order Stokes phenomenon. Proc. R. Soc. Lond. A 460, 22852303.
Inui, T. & Kajitani, H. 1977 A study on local non-linear free surface effects in ship waves and wave resistance. Schiffstechnik 24, 178213.
Keller, J. B. 1979 The ray theory of ship waves and the class of streamlined ships. J. Fluid Mech. 91, 465487.
King, A. C. & Bloor, M. I. G. 1987 Free-surface flow over a step. J. Fluid Mech. 182, 193208.
Kostyukov, A. A. 1968 Theory of Ship Waves and Wave Resistance. Effective Communications Inc.
Lustri, C. J. & Chapman, S. J. 2014 Unsteady flow over a submerged source with low Froude number. Eur. J. Appl. Maths 25 (05), 655680.
Lustri, C. J., McCue, S. W. & Binder, B. J. 2012 Free surface flow past topography: a beyond-all-orders approach. Eur. J. Appl. Maths 1 (1), 127.
Lustri, C. J., McCue, S. W. & Chapman, S. J. 2013 Exponential asymptotics of free surface flow due to a line source. IMA J. Appl. Maths 78 (4), 697713.
Madurasinghe, M. A. D. & Tuck, E. O. 1986 Ship bows with continuous and splashless flow attachment. J. Austral. Math. Soc. B 27, 442452.
Miloh, T. & Dagan, G. 1985 A study of nonlinear wave resistance using integral equations in Fourier space. J. Fluid Mech. 159, 433458.
Ogilvie, T. F.1968 Wave resistance: the low speed limit. Tech. Rep. Michigan University, Ann Arbor.
Ogilvie, T. F. & Chen, S.-X.1982 Water waves generated by a slowly moving two-dimensional body. Part 1. Tech. Rep. DTIC Document.
Olde Daalhuis, A. B., Chapman, S. J., King, J. R., Ockendon, J. R. & Tew, R. H. 1995 Stokes Phenomenon and matched asymptotic expansions. SIAM J. Appl. Maths 55 (6), 14691483.
Trinh, P. H. 2010 Exponential asymptotics and Stokes line smoothing for generalized solitary waves. In Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances (ed. Steinrück, H.), pp. 121126. Springer.
Trinh, P. H. 2016 A topological study of gravity waves generated by moving bodies using the method of steepest descents. Proc. R. Soc. Lond. A 472, 20150833.
Trinh, P. H. & Chapman, S. J. 2013a New gravity-capillary waves at low speeds. Part 1. Linear theory. J. Fluid Mech. 724, 367391.
Trinh, P. H. & Chapman, S. J. 2013b New gravity-capillary waves at low speeds. Part 2. Nonlinear theory. J. Fluid Mech. 724, 392424.
Trinh, P. H. & Chapman, S. J. 2014 The wake of a two-dimensional ship in the low-speed limit: results for multi-cornered hulls. J. Fluid Mech. 741, 492513.
Trinh, P. H. & Chapman, S. J. 2015 Exponential asymptotics and problems with coalescing singularities. Nonlinearity 28 (5), 12291256.
Trinh, P. H., Chapman, S. J. & Vanden-Broeck, J.-M. 2011 Do waveless ships exist? Results for single-cornered hulls. J. Fluid Mech. 685, 413439.
Tuck, E. O. 1990 Water non-waves. In Mini-conference on Free and Moving Boundary and Diffusion Problems, Proceedings of the Centre for Mathematics and its Applications, pp. 109127. Centre for Mathematics and its Applications, Australian National University.
Tuck, E. O. 1991a Ship-hydrodynamic free-surface problems without waves. J. Ship Res. 35 (4), 277287.
Tuck, E. O. 1991b Waveless solutions of wave equations. In Proceedings of the 6th International Workshop on Water Waves and Floating Bodies. MIT.
Tulin, M. P. 1983 An exact theory of gravity wave generation by moving bodies, its approximation and its implications. In Proceedings of the 14th Symposium on Naval Hydrodynamics, Ann Arbor, Michigan, pp. 1951. National Academy Press.
Tulin, M. P. 1984 Surface waves from the ray point of view. In Proceedings of the 14th Symposium on Naval Hydrodynamics, pp. 919. National Academy Press.
Tulin, M. P. 2005 Reminiscences and reflections: ship waves. J. Ship Res. 49 (4), 238246.
Vanden-Broeck, J.-M. 2010 Gravity-Capillary Free-Surface Flows. Cambridge University Press.
Vanden-Broeck, J.-M. & Miloh, T. 1995 Computations of steep gravity waves by a refinement of Davies–Tulin’s approximation. SIAM J. Appl. Maths 55 (4), 892903.
Vanden-Broeck, J.-M., Schwartz, L. W. & Tuck, E. O. 1978 Divergent low-Froude-number series expansion of nonlinear free-surface flow problems. Proc. R. Soc. Lond. A 361, 207224.
Vanden-Broeck, J.-M. & Tuck, E. O. 1977 Computation of near-bow or stern flows using series expansion in the Froude number. In 2nd International Conference on Numerical Ship Hydrodynamics. University of California.
Wehausen, J. V. 1973 The wave resistance of ships. Adv. Appl. Mech. 13, 93245.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed