Bennett, T.2015 Exponential asymptotics for integrals with degenerate and non-isolated critical points. PhD thesis, University of Southampton.

Berry, M.
1991
Asymptotics, superasymptotics, hyperasymptotics. In Asymptotics Beyond All Orders (ed. Segur, H.), pp. 1–14. Springer.

Berry, M. V.
1989
Stokes’ phenomenon; smoothing a Victorian discontinuity. Publ. Math. Inst. Hautes Études Sci.
68, 211–221.

Bleistein, N. & Handelsman, R. A.
1975
Asymptotic Expansions of Integrals. Courier Dover Publications.

Boyd, J. P.
1998
Weakly Nonlocal Solitary Waves and Beyond-all-orders Asymptotics. Kluwer Academic Publishers.

Brandsma, F. J. & Hermans, A. J.
1985
A quasi-linear free surface condition in slow ship theory. Schiffstechnik Bd.
32, 25–41.

Chapman, S. J., King, J. R. & Adams, K. L.
1998
Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations. Proc. R. Soc. Lond. A
454, 2733–2755.

Chapman, S. J. & Mortimer, D. B.
2005
Exponential asymptotics and Stokes lines in a partial differential equation. Proc. R. Soc. Lond. A
461 (2060), 2385–2421.

Chapman, S. J. & Vanden-Broeck, J.-M.
2002
Exponential asymptotics and capillary waves. SIAM J. Appl. Maths
62 (6), 1872–1898.

Chapman, S. J. & Vanden-Broeck, J.-M.
2006
Exponential asymptotics and gravity waves. J. Fluid Mech.
567, 299–326.

Costin, O.
2008
Asymptotics and Borel Summability, vol. 141. Chapman & Hall/CRC.

Craig, W. & Sternberg, P.
1992
Symmetry of free-surface flows. Arch. Rat. Mech. Anal.
118 (1), 1–36.

Crew, S. C. & Trinh, P. H.
2016
New singularities for Stokes waves. J. Fluid Mech.
798, 256–283.

Dagan, G. & Tulin, M. P.
1972
Two-dimensional free-surface gravity flow past blunt bodies. J. Fluid Mech.
51 (3), 529–543.

Davies, T. V.
1951
The theory of symmetrical gravity waves of finite amplitude. I. Proc. R. Soc. Lond. A
208 (1095), 475–486.

Dawson, C. W.
1977
A practical computer method for solving ship-wave problems. In 2nd International Conference of Numerical Ship Hydrodynamics, Berkeley, USA. University of California.

Doctors, L. J. & Dagan, G.
1980
Comparison of nonlinear wave-resistance theories for a two-dimensional pressure distribution. J. Fluid Mech.
98 (03), 647–672.

Farrow, D. E. & Tuck, E. O.
1995
Further studies of stern wavemaking. J. Austral. Math. Soc. B
36, 424–437.

Howls, C. J., Langman, P. J. & Daalhuis, A. B. Olde
2004
On the higher-order Stokes phenomenon. Proc. R. Soc. Lond. A
460, 2285–2303.

Inui, T. & Kajitani, H.
1977
A study on local non-linear free surface effects in ship waves and wave resistance. Schiffstechnik
24, 178–213.

Keller, J. B.
1979
The ray theory of ship waves and the class of streamlined ships. J. Fluid Mech.
91, 465–487.

King, A. C. & Bloor, M. I. G.
1987
Free-surface flow over a step. J. Fluid Mech.
182, 193–208.

Kostyukov, A. A.
1968
Theory of Ship Waves and Wave Resistance. Effective Communications Inc.

Lustri, C. J. & Chapman, S. J.
2014
Unsteady flow over a submerged source with low Froude number. Eur. J. Appl. Maths
25 (05), 655–680.

Lustri, C. J., McCue, S. W. & Binder, B. J.
2012
Free surface flow past topography: a beyond-all-orders approach. Eur. J. Appl. Maths
1 (1), 1–27.

Lustri, C. J., McCue, S. W. & Chapman, S. J.
2013
Exponential asymptotics of free surface flow due to a line source. IMA J. Appl. Maths
78 (4), 697–713.

Madurasinghe, M. A. D. & Tuck, E. O.
1986
Ship bows with continuous and splashless flow attachment. J. Austral. Math. Soc. B
27, 442–452.

Miloh, T. & Dagan, G.
1985
A study of nonlinear wave resistance using integral equations in Fourier space. J. Fluid Mech.
159, 433–458.

Ogilvie, T. F.1968 Wave resistance: the low speed limit. *Tech. Rep.* Michigan University, Ann Arbor.

Ogilvie, T. F. & Chen, S.-X.1982 Water waves generated by a slowly moving two-dimensional body. Part 1. *Tech. Rep.* DTIC Document.

Olde Daalhuis, A. B., Chapman, S. J., King, J. R., Ockendon, J. R. & Tew, R. H.
1995
Stokes Phenomenon and matched asymptotic expansions. SIAM J. Appl. Maths
55 (6), 1469–1483.

Trinh, P. H.
2010
Exponential asymptotics and Stokes line smoothing for generalized solitary waves. In Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances (ed. Steinrück, H.), pp. 121–126. Springer.

Trinh, P. H.
2016
A topological study of gravity waves generated by moving bodies using the method of steepest descents. Proc. R. Soc. Lond. A
472, 20150833.

Trinh, P. H. & Chapman, S. J.
2013a
New gravity-capillary waves at low speeds. Part 1. Linear theory. J. Fluid Mech.
724, 367–391.

Trinh, P. H. & Chapman, S. J.
2013b
New gravity-capillary waves at low speeds. Part 2. Nonlinear theory. J. Fluid Mech.
724, 392–424.

Trinh, P. H. & Chapman, S. J.
2014
The wake of a two-dimensional ship in the low-speed limit: results for multi-cornered hulls. J. Fluid Mech.
741, 492–513.

Trinh, P. H. & Chapman, S. J.
2015
Exponential asymptotics and problems with coalescing singularities. Nonlinearity
28 (5), 1229–1256.

Trinh, P. H., Chapman, S. J. & Vanden-Broeck, J.-M.
2011
Do waveless ships exist? Results for single-cornered hulls. J. Fluid Mech.
685, 413–439.

Tuck, E. O.
1990
Water non-waves. In Mini-conference on Free and Moving Boundary and Diffusion Problems, Proceedings of the Centre for Mathematics and its Applications, pp. 109–127. Centre for Mathematics and its Applications, Australian National University.

Tuck, E. O.
1991a
Ship-hydrodynamic free-surface problems without waves. J. Ship Res.
35 (4), 277–287.

Tuck, E. O.
1991b
Waveless solutions of wave equations. In Proceedings of the 6th International Workshop on Water Waves and Floating Bodies. MIT.

Tulin, M. P.
1983
An exact theory of gravity wave generation by moving bodies, its approximation and its implications. In Proceedings of the 14th Symposium on Naval Hydrodynamics, Ann Arbor, Michigan, pp. 19–51. National Academy Press.

Tulin, M. P.
1984
Surface waves from the ray point of view. In Proceedings of the 14th Symposium on Naval Hydrodynamics, pp. 9–19. National Academy Press.

Tulin, M. P.
2005
Reminiscences and reflections: ship waves. J. Ship Res.
49 (4), 238–246.

Vanden-Broeck, J.-M.
2010
Gravity-Capillary Free-Surface Flows. Cambridge University Press.

Vanden-Broeck, J.-M. & Miloh, T.
1995
Computations of steep gravity waves by a refinement of Davies–Tulin’s approximation. SIAM J. Appl. Maths
55 (4), 892–903.

Vanden-Broeck, J.-M., Schwartz, L. W. & Tuck, E. O.
1978
Divergent low-Froude-number series expansion of nonlinear free-surface flow problems. Proc. R. Soc. Lond. A
361, 207–224.

Vanden-Broeck, J.-M. & Tuck, E. O.
1977
Computation of near-bow or stern flows using series expansion in the Froude number. In 2nd International Conference on Numerical Ship Hydrodynamics. University of California.

Wehausen, J. V.
1973
The wave resistance of ships. Adv. Appl. Mech.
13, 93–245.