Skip to main content

On the appearance of internal wave attractors due to an initial or parametrically excited disturbance

  • Janis Bajars (a1), Jason Frank (a1) and Leo R. M. Maas (a2)

In this paper we solve two initial value problems for two-dimensional internal gravity waves. The waves are contained in a uniformly stratified, square-shaped domain whose sidewalls are tilted with respect to the direction of gravity. We consider several disturbances of the initial stream function field and solve both for its free evolution and for its evolution under parametric excitation. We do this by developing a structure-preserving numerical method for internal gravity waves in a two-dimensional stratified fluid domain. We recall the linearized, inviscid Euler–Boussinesq model, identify its Hamiltonian structure, and derive a staggered finite difference scheme that preserves this structure. For the discretized model, the initial condition can be projected onto normal modes whose dynamics is described by independent harmonic oscillators. This fact is used to explain the persistence of various classes of wave attractors in a freely evolving (i.e. unforced) flow. Under parametric forcing, the discrete dynamics can likewise be decoupled into Mathieu equations. The most unstable resonant modes dominate the solution, forming wave attractors.

Corresponding author
Email address for correspondence: jason@cwi.nll
Hide All
Arnold, V. I. 1989 Mathematical Methods of Classical Mechanics, 2nd edn. Springer.
Bühler, O. & Holmes-Cerfon, M. 2011 Decay of an internal tide due to random topography in the ocean. J. Fluid Mech. 678, 271293.
Dintrans, B., Rieutord, M. & Valdettaro, L. 1999 Gravito-inertial waves in a rotating stratified spherical shell. J. Fluid Mech. 398, 271297.
Drijfhout, S. & Maas, L. R. M. 2007 Impact of channel geometry and rotation on the trapping of internal tides. J. Phys. Oceanogr. 37, 27402763.
Echeverri, P., Yokossi, T., Balmforth, N. J. & Peacock, T. 2011 Tidally generated internal-wave attractors between double ridges. J. Fluid Mech. 669, 354374.
Fricker, P. & Nepf, H. 2000 Bathymetry, stratification, and internal seiche structure. J. Geophys. Res. 105, 14,23714,251.
Gerkema, T. & van Haren, H. 2012 Absence of internal tidal beams due to non-uniform stratification. J. Sea Res. doi:10.1016/j.seares.2012.03.008.
Grisouard, N., Staquet, C. & Pairaud, I. 2008 Numerical simulation of a two-dimensional internal wave attractor. J. Fluid Mech. 614, 114.
Hairer, E., Lubich, C. & Wanner, G. 2006 Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations. Springer.
Hazewinkel, J., van Breevoort, P., Dalziel, S. B. & Maas, L. R. M. 2008 Observations on the wavenumber spectrum and evolution of an internal wave attractor. J. Fluid Mech. 598, 373382.
Hazewinkel, J., Grisouard, N. G. & Dalziel, S. B. 2011 Comparison of laboratory and numerically observed scalar fields of an internal wave attractor. Eur. J. Mech. B 30 (1), 5156.
Hazewinkel, J., Tsimitri, C., Maas, L. R. M. & Dalziel, S. B. 2010 Observations on the robustness of internal wave attractors to perturbations. Phys. Fluids 22, 107102.
Holm, D. D., Marsden, J. E. & Ratiu, T. S. 2002 The Euler–Poincaré equations in geophysical fluid dynamics. In Large-Scale Atmosphere-Ocean Dynamics II (ed. Roulstone, I. & Norbury, J.), pp. 251300. Cambridge University Press.
John, F. 1941 The Dirichlet problem for a hyperbolic equation. Am. J. Math. 63, 141154.
Kopecz, S. 2006 Fractal internal wave patterns in a tilted square. Unpublished report, Kassel University.
Lam, F.-P. A. & Maas, L. R. M. 2008 Internal wave focusing revisited: a reanalysis and new theoretical links. Fluid Dyn. Res. 40 (2), 95122.
LaZerte, B. D. 1980 The dominating higher order vertical modes of the internal seiche in a small lake. Limnol. Oceanogr. 25 (S), 846854.
Leimkuhler, B. J. & Reich, S. 2004 Simulating Hamiltonian Dynamics. Cambridge University Press.
Lighthill, J. 1996 Internal waves and related initial-value problems. Dyn. Atmos. Oceans 23, 317.
Maas, L. R. M. 2005 Wave attractors: linear yet nonlinear. Intl J. Bifurcation Chaos 15 (9), 27572782.
Maas, L. R. M. 2009 Exact analytic self-similar solution of a wave attractor field. Physica D: Nonlinear Phenomena 238 (5), 502505.
Maas, L. R. M., Benielli, D., Sommeria, J. & Lam, F. P. A. 1997 Observation of an internal wave attractor in a confined, stably stratified fluid. Nature 388, 557561.
Maas, L. R. M. & Lam, F.-P. A. 1995 Geometric focusing of internal waves. J. Fluid Mech. 300, 141.
McEwan, A. D. & Robinson, R. M. 1975 Parametric instability of internal gravity waves. J. Fluid Mech. 67 (4), 667687.
McLachlan, R. I. 1995 Symplectic integration of Hamiltonian wave equations. Numer. Math. 66 (1), 465492.
Morrison, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70 (2), 467521.
Ogilvie, G. I. 2005 Wave attractors and the asymptotic dissipation rate of tidal disturbances. J. Fluid Mech. 543, 1944.
Olver, P. J. 1986 Applications of Lie Groups to Differential Equations. Springer.
Rieutord, M., Georgeot, B. & Valdettaro, L. 2000 Wave attractors in rotating fluids: a paradigm for ill-posed Cauchy problems. Phys. Rev. Lett. 85, 42774280.
Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press.
da Silva, J. C. B., Magalhães, J., Gerkema, T. & Maas, L. R. M. 2012 Internal solitary waves in the Red Sea: an unfolding mystery. Oceanography 25 (2), 96107.
Swart, A., Sleijpen, G. L. G., Maas, L. R. M. & Brandts, J. 2007 Numerical solution of the two-dimensional Poincaré equation. J. Comput. Appl. Math. 200 (1), 317341.
Tang, W. & Peacock, T. 2010 Lagrangian coherent structures and internal wave attractors. Chaos 20, 017508.
Tilgner, A. 1999 Driven inertial oscillations in spherical shells. Phys. Rev. E 59, 17891794.
Whitham, G. B. 1999 Linear and Nonlinear Waves, 2nd edn. Wiley.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed