Skip to main content

On the mechanism of air entrainment by liquid jets at a free surface


The process by which a liquid jet falling into a liquid pool entrains air is studied experimentally and theoretically. It is shown that, provided the nozzle from which the jet issues is properly contoured, an undisturbed jet does not entrap air even at relatively high Reynolds numbers. When surface disturbances are generated on the jet by a rapid increase of the liquid flow rate, on the other hand, large air cavities are formed. Their collapse under the action of gravity causes the entrapment of bubbles in the liquid. This sequence of events is recorded with a CCD and a high-speed camera. A boundary-integral method is used to simulate the process numerically with results in good agreement with the observations. An unexpected finding is that the role of the jet is not simply that of conveying the disturbance to the pool surface. Rather, both the observed energy budget and the simulations imply the presence of a mechanism by which part of the jet energy is used in creating the cavity. A hypothesis on the nature of this mechanism is presented.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 95 *
Loading metrics...

Abstract views

Total abstract views: 217 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.