Skip to main content
    • Aa
    • Aa

On the rheology of a dilute emulsion in a uniform electric field


A small-deformation perturbation analysis is developed to describe the effect of a uniform electric field on drop deformation and orientation in linear flows and emulsion shear rheology. All media are treated as leaky dielectrics, and fluid motion is described by the Stokes equations. The one-particle contribution to the effective stress of a dilute emulsion is obtained from the drop stresslet. Analytical solutions are derived as regular perturbations in the limits of small capillary number and large viscosity ratio. The results show that both shape distortion and charge convection modify emulsion rheology. Drop deformation due to application of an electric field in a direction perpendicular to the shear flow gives rise to normal stresses and may lead to shear thickening or shear thinning, depending on the electric properties of the fluids. Charge convection due to the imposed shear affects both the shear viscosity and normal stresses.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D. A. Varshalovich , A. N. Moskalev & V. K. Kheronskii 1988 Quantum Theory of Angular Momentum. World Scientific.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 74 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd May 2017. This data will be updated every 24 hours.