Skip to main content Accesibility Help

Optimal Taylor–Couette turbulence

  • Dennis P. M. van Gils (a1), Sander G. Huisman (a1), Siegfried Grossmann (a2), Chao Sun (a1) and Detlef Lohse (a1)...

Strongly turbulent Taylor–Couette flow with independently rotating inner and outer cylinders with a radius ratio of is experimentally studied. From global torque measurements, we analyse the dimensionless angular velocity flux as a function of the Taylor number and the angular velocity ratio in the large-Taylor-number regime and well off the inviscid stability borders (Rayleigh lines) for co-rotation and for counter-rotation. We analyse the data with the common power-law ansatz for the dimensionless angular velocity transport flux , with an amplitude and an exponent . The data are consistent with one effective exponent for all , but we discuss a possible dependence in the co- and weakly counter-rotating regimes. The amplitude of the angular velocity flux is measured to be maximal at slight counter-rotation, namely at an angular velocity ratio of , i.e. along the line . This value is theoretically interpreted as the result of a competition between the destabilizing inner cylinder rotation and the stabilizing but shear-enhancing outer cylinder counter-rotation. With the help of laser Doppler anemometry, we provide angular velocity profiles and in particular identify the radial position of the neutral line, defined by for fixed height . For these large values, the ratio , which is close to , is distinguished by a zero angular velocity gradient in the bulk. While for moderate counter-rotation , the neutral line still remains close to the outer cylinder and the probability distribution function of the bulk angular velocity is observed to be monomodal. For stronger counter-rotation the neutral line is pushed inwards towards the inner cylinder; in this regime the probability distribution function of the bulk angular velocity becomes bimodal, reflecting intermittent bursts of turbulent structures beyond the neutral line into the outer flow domain, which otherwise is stabilized by the counter-rotating outer cylinder. Finally, a hypothesis is offered allowing a unifying view and consistent interpretation for all these various results.

Corresponding author
Email address for correspondence:
Hide All
1. Ahlers, G., Funfschilling, D. & Bodenschatz, E. 2011 Addendum to Transitions in heat transport by turbulent convection at Rayleigh numbers up to . New J. Phys. 13, 049401.
2. Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503.
3. Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155.
4. van den Berg, T. H., Doering, C., Lohse, D. & Lathrop, D. 2003 Smooth and rough boundaries in turbulent Taylor–Couette flow. Phys. Rev. E 68, 036307.
5. Borrero-Echeverry, D., Schatz, M. F. & Tagg, R. 2010 Transient turbulence in Taylor–Couette flow. Phys. Rev. E 81, 025301.
6. Bradshaw, P. 1969 The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36, 177191.
7. Buchel, P., Lucke, M., Roth, D. & Schmitz, R. 1996 Pattern selection in the absolutely unstable regime as a nonlinear eigenvalue problem: Taylor vortices in axial flow. Phys. Rev. E 53 (5), 47644777.
8. Burin, M. J., Schartman, E. & Ji, H. 2010 Local measurements of turbulent angular momentum transport in circular Couette flow. Exp. Fluids 48, 763769.
9. Busse, F. H. 1972 The bounding theory of turbulence and its physical significance in the case of turbulent Couette flow. In Statistical Models and Turbulence, Lecture Notes in Physics , vol. 12, p. 103 Springer.
10. Calzavarini, E., Lohse, D., Toschi, F. & Tripiccione, R. 2005 Rayleigh and Prandtl number scaling in the bulk of Rayleigh–Bénard turbulence. Phys. Fluids 17, 055107.
11. Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385.
12. Coles, D. & van Atta, C. 1966 Measured distortion of a laminar circular Couette flow by end effects. J. Fluid Mech. 25, 513.
13. Coughlin, K. & Marcus, P. S. 1996 Turbulent bursts in Couette–Taylor flow. Phys. Rev. Lett. 77 (11), 22142217.
14. DiPrima, R. C. & Swinney, H. L. 1981 Instabilities and transition in flow between concentric rotating cylinders. In Hydrodynamic Instabilities and the Transition to Turbulence (ed. Swinney, H. L. & Gollub, J. P. ), pp. 139180. Springer.
15. Doering, C. & Constantin, P. 1994 Variational bounds on energy-dissipation in incompressible flow: shear flow. Phys. Rev. E 49, 40874099.
16. Dominguez-Lerma, M. A., Ahlers, G. & Cannell, D. S. 1984 Marginal stability curve and linear growth rate for rotating Couette–Taylor flow and Rayleigh–Bénard convection. Phys. Fluids 27, 856.
17. Dominguez-Lerma, M. A., Cannell, D. S. & Ahlers, G. 1986 Eckhaus boundary and wavenumber selection in rotating Couette–Taylor flow. Phys. Rev. A 34, 4956.
18. Dubrulle, B., Dauchot, O., Daviaud, F., Longgaretti, P. Y., Richard, D. & Zahn, J. P. 2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17, 095103.
19. Dubrulle, B. & Hersant, F. 2002 Momentum transport and torque scaling in Taylor–Couette flow from an analogy with turbulent convection. Eur. Phys. J. B 26, 379386.
20. Dutcher, C. S. & Muller, S. J. 2007 Explicit analytic formulas for Newtonian Taylor–Couette primary instabilities. Phys. Rev. E 75, 04730.
21. Eckhardt, B., Grossmann, S. & Lohse, D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.
22. Effinger, H. & Grossmann, S. 1987 Static structure function of turbulent flow from the Navier–Stokes equation. Z. Phys. B 66, 289.
23. Esser, A. & Grossmann, S. 1996 Analytic expression for Taylor–Couette stability boundary. Phys. Fluids 8, 18141819.
24. van Gils, D. P. M., Bruggert, G. W., Lathrop, D. P., Sun, C. & Lohse, D. 2011a The Twente turbulent Taylor–Couette facility: strongly turbulent (multi-phase) flow between independently rotating cylinders. Rev. Sci. Instrum. 82, 025105.
25. van Gils, D. P. M., Huisman, S. G., Bruggert, G. W., Sun, C. & Lohse, D. 2011b Torque scaling in turbulent Taylor–Couette flow with co- and counter-rotating cylinders. Phys. Rev. Lett. 106, 024502.
26. Greenspan, H. P. 1990 The Theory of Rotating Flows. Breukelen.
27. Grossmann, S. 2000 The onset of shear flow turbulence. Rev. Mod. Phys. 72, 603618.
28. Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying view. J. Fluid. Mech. 407, 2756.
29. Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 33163319.
30. Grossmann, S. & Lohse, D. 2002 Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66, 016305.
31. Grossmann, S. & Lohse, D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16, 44624472.
32. Grossmann, S. & Lohse, D. 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108.
33. He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2012 Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.
34. Hollerbach, R. & Fournier, A. 2004 End-effects in rapidly rotating cylindrical Taylor–Couette flow. In Workshop on MHD Couette Flows: Experiments and Models, Acitrezza, Italy, 29 February–2 March (ed. R. Rosner, G. Rudiger & A. Bonanno), AIP Conference Proceedings, vol. 733, pp. 114–121. American Institute of Physics..
35. van Hout, R. & Katz, J. 2011 Measurements of mean flow and turbulence characteristics in high-Reynolds number counter-rotating Taylor–Couette flow. Phys. Fluids 23 (10), 105102.
36. Huisman, S. G., van Gils, D. P. M., Grossmann, S., Sun, C. & Lohse, D. 2012a Ultimate turbulent Taylor–Couette flow. Phys. Rev. Lett. 108, 024501.
37. Huisman, S. G., van Gils, D. P. M. & Sun, C. 2012 b Applying laser Doppler anemometry inside a Taylor–Couette geometry using a ray-tracer to correct for curvature effects. Eur. J. Mech. B/Fluids (in press).
38. Ji, H., Burin, M., Schartman, E. & Goodman, J. 2006 Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444, 343346.
39. Kraichnan, R. H. 1962 Turbulent thermal convection at arbritrary Prandtl number. Phys. Fluids 5, 13741389.
40. Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.
41. Lathrop, D. P., Fineberg, J. & Swinney, H. S. 1992a Transition to shear-driven turbulence in Couette–Taylor flow. Phys. Rev. A 46, 63906405.
42. Lathrop, D. P., Fineberg, J. & Swinney, H. S. 1992b Turbulent flow between concentric rotating cylinders at large Reynolds numbers. Phys. Rev. Lett. 68, 15151518.
43. Lewis, G. S. & Swinney, H. L. 1999 Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette–Taylor flow. Phys. Rev. E 59, 54575467.
44. Lohse, D. & Toschi, F. 2003 The ultimate state of thermal convection. Phys. Rev. Lett. 90, 034502.
45. Marcus, P. S. 1984 Simulation of Taylor–Couette flow. Part 1. Numerical methods and comparison with experiment. J. Fluid Mech. 146, 4564.
46. Mullin, T., Cliffe, K. A. & Pfister, G. 1987 Unusual time-dependent phenomena in Taylor–Couette flow at moderately low Reynolds numbers. Phys. Rev. Lett. 58 (21), 22122215.
47. Mullin, T., Pfister, G. & Lorenzen, A. 1982 New observations on hysteresis effects in Taylor–Couette flow. Phys. Fluids 25 (7), 11341136.
48. Ostilla, R., Stevens, R. J. A. M., Grossmann, S., Verzicco, R. & Lohse, D. 2012 Optimal Taylor–Couette flow: transition to turbulence. J. Fluid Mech. (submitted).
49. Paoletti, M. S. & Lathrop, D. P. 2011 Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett. 106, 024501.
50. Pfister, G. & Rehberg, I. 1981 Space dependent order parameter in circular Couette flow transitions. Phys. Lett. 83, 1922.
51. Pfister, G., Schmidt, H., Cliffe, K. A. & Mullin, T. 1988 Bifurcation phenomena in Taylor–Couette flow in a very short annulus. J. Fluid Mech. 191, 118.
52. Ravelet, F., Delfos, R. & Westerweel, J. 2010 Influence of global rotation and Reynolds number on the large-scale features of a turbulent Taylor–Couette flow. Phys. Fluids 22 (5), 055103.
53. Richard, D. 2001 Instabilités hydrodynamiques dans les ecoulements en rotation différentielle. PhD thesis, Université Paris VII.
54. Roche, P. E., Castaing, B., Chabaud, B. & Hebral, B. 2001 Observation of the power law in Rayleigh–Bénard convection. Phys. Rev. E 63, 045303.
55. Schmidt, L. E., Calzavarini, E., Lohse, D., Toschi, F. & Verzicco, R. 2012 Axially homogeneous Rayleigh–Bénard convection in a cylindrical cell. J. Fluid Mech. 691, 5268.
56. Smith, G. P. & Townsend, A. A. 1982 Turbulent Couette flow between concentric cylinders at large Taylor numbers. J. Fluid Mech. 123, 187217.
57. Stevens, R. J. A. M., Lohse, D. & Verzicco, R. 2011 Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection. J. Fluid Mech. 688, 3143.
58. Stevens, R. J. A. M., Verzicco, R. & Lohse, D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495507.
59. Sugiyama, K., Calzavarini, E., Grossmann, S. & Lohse, D. 2007 Non-Oberbeck–Boussinesq effects in Rayleigh–Bénard convection: beyond boundary-layer theory. Europhys. Lett. 80, 34002.
60. Sun, C., Cheung, Y. H. & Xia, K.-Q. 2008 Experimental studies of the viscous boundary layer properties in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 605, 79113.
61. Tagg, R. 1994 The Couette–Taylor problem. Nonlinear Sci. Today 4 (3), 1.
62. Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289.
63. Wendt, F. 1933 Turbulente Strömungen zwischen zwei rotierenden Zylindern. Ingenieurs-Archiv 4, 577595.
64. Werne, J. 1994 Plume model for boundary layer dynamics in hard turbulence. Phys. Rev. E 49, 4072.
65. Zhou, Q., Stevens, R. J. A. M., Sugiyama, K., Grossmann, S., Lohse, D. & Xia, K.-Q. 2010 Prandtl–Blasius temperature and velocity boundary layer profiles in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 664, 297.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed