Skip to main content Accessibility help

Oscillatory Marangoni flows with inertia

  • Orest Shardt (a1), Hassan Masoud (a1) (a2) and Howard A. Stone (a1)


When the surface of a liquid has a non-uniform distribution of a surfactant that lowers surface tension, the resulting variation in surface tension drives a flow that spreads the surfactant towards a uniform distribution. We study the spreading dynamics of an insoluble and non-diffusing surfactant on an initially motionless liquid. We derive solutions for the evolution over time of sinusoidal variations in surfactant concentration with a small initial amplitude relative to the average concentration. In this limit, the coupled flow and surfactant transport equations are linear. In contrast to exponential decay when the inertia of the flow is negligible, the solution for unsteady Stokes flow exhibits oscillations when inertia is sufficient to spread the surfactant beyond a uniform distribution. This oscillatory behaviour exhibits two properties that distinguish it from that of a simple harmonic oscillator: the amplitude changes sign at most three times, and the decay at late times follows a power law with an exponent of $-3/2$ . As the surface oscillates, the structure of the subsurface flow alternates between one and two rows of counter-rotating vortices, starting with one row and ending with two during the late-time monotonic decay. We also examine numerically the evolution of the surfactant distribution when the system is nonlinear due to a large initial amplitude.


Corresponding author

Email address for correspondence:


Hide All
Bush, J. W. M. & Hu, D. L. 2006 Walking on water: Biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339369.
DLMF 2015 NIST Digital Library of Mathematical Functions, Release 1.0.10 of 2015-08-07, online companion to Olver et al. (2010).
Dussaud, A. D. & Troian, S. M. 1998 Dynamics of spontaneous spreading with evaporation on a deep fluid layer. Phys. Fluids 10, 2338.
Edmonstone, B. D., Craster, R. V. & Matar, O. K. 2006 Surfactant-induced fingering phenomena beyond the critical micelle concentration. J. Fluid Mech. 564, 105138.
Erdélyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G. 1954 Tables of Integral Transforms. McGraw-Hill.
Fernandez, J. M. & Homsy, G. M. 2004 Chemical reaction-driven tip-streaming phenomena in a pendant drop. Phys. Fluids 16, 25482555.
Grotberg, J. B. 1994 Pulmonary flow and transport phenomena. Annu. Rev. Fluid Mech. 26, 529571.
Jensen, O. E. 1994 Self-similar, surfactant-driven flows. Phys. Fluids 6, 10841094.
Jensen, O. E. 1995 The spreading of insoluble surfactant at the free surface of a deep fluid layer. J. Fluid Mech. 293, 349378.
Jensen, O. E. & Grotberg, J. B. 1992 Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture. J. Fluid Mech. 240, 259288.
Jensen, O. E. & Naire, S. 2006 The spreading and stability of a surfactant-laden drop on a prewetted substrate. J. Fluid Mech. 554, 524.
Kohira, M. I., Hayashima, Y., Nagayama, M. & Nakata, S. 2001 Synchronized self-motion of two camphor boats. Langmuir 17, 71247129.
Kovalchuk, V. I., Kamusewitz, H., Vollhardt, D. & Kovalchuk, N. M. 1999 Auto-oscillation of surface tension. Phys. Rev. E 60, 20292036.
Lauga, E. & Davis, A. M. J. 2012 Viscous Marangoni propulsion. J. Fluid Mech. 705, 120133.
Lavrenteva, O. M. & Nir, A. 2001 Spontaneous thermocapillary interaction of drops: unsteady convective effects at high Peclet numbers. Phys. Fluids 13, 368381.
Lucassen, J. 1968a Longitudinal capillary waves. Part 1: theory. Trans. Faraday Soc. 64, 22212229.
Lucassen, J. 1968b Longitudinal capillary waves. Part 2: experiments. Trans. Faraday Soc. 64, 22302235.
Masoud, H. & Shelley, M. J. 2014 Collective surfing of chemically active particles. Phys. Rev. Lett. 112, 128304.
Masoud, H. & Stone, H. A. 2014 A reciprocal theorem for Marangoni propulsion. J. Fluid Mech. 741, R4.
Matar, O. K. & Troian, S. M. 1999 Spreading of a surfactant monolayer on a thin liquid film: onset and evolution of digitated structures. Chaos 9, 141153.
Nakata, S., Doi, Y. & Kitahata, H. 2005 Synchronized sailing of two camphor boats in polygonal chambers. J. Phys. Chem. B 109, 17981802.
Nakata, S. & Hayashima, Y. 1998 Spontaneous dancing of a camphor scraping. J. Chem. Soc. Faraday Trans. 94, 36553658.
Nakata, S., Iguchi, Y., Ose, S., Kuboyama, M., Ishii, T. & Yoshikawa, K. 1997 Self-rotation of a camphor scraping on water: new insight into the old problem. Langmuir 13, 44544458.
Olver, F. W. J., Lozier, D. W., Boisvert, R. F. & Clark, C. W.(Eds) 2010 NIST Handbook of Mathematical Functions, Cambridge University Press; print companion to (DLMF 2015).
Pimienta, V. & Antoine, C. 2014 Self-propulsion on liquid surfaces. Curr. Opin. Colloid Interface Sci. 19, 290299.
Rayleigh, Lord 1890 Measurements of the amount of oil necessary in order to check the motions of camphor upon water. Proc. R. Soc. Lond. 47, 364367.
Scriven, L. E. & Sternling, C. V. 1960 The Marangoni effects. Nature 187, 186188.
Sternling, C. V. & Scriven, L. E. 1959 Interfacial turbulence: hydrodynamic instability and the Marangoni effect. AIChE J. 5, 514523.
Stocker, R. & Bush, J. W. M. 2007 Spontaneous oscillations of a sessile lens. J. Fluid Mech. 583, 465475.
Thess, A. 1996 Stokes flow at infinite Marangoni number: exact solutions for the spreading and collapse of a surfactant. Phys. Scr. T 67, 96100.
Thom, A. 1933 The flow past circular cylinders at low speeds. Proc. R. Soc. Lond. A 141, 651669.
Troian, S. M., Herbolzheimer, E. & Safran, S. A. 1990 Model for the fingering instability of spreading surfactant drops. Phys. Rev. Lett. 65, 333336.
Velarde, M. G. & Chu, X.-L. 1989 Dissipative hydrodynamic oscillators. I: Marangoni effect and sustained longitudinal waves at the interface of two liquids. Nuovo Cimento D 11, 709716.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Oscillatory Marangoni flows with inertia

  • Orest Shardt (a1), Hassan Masoud (a1) (a2) and Howard A. Stone (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.