Skip to main content Accessibility help

Particle capture and low-Reynolds-number flow around a circular cylinder

  • Alexis Espinosa-Gayosso (a1) (a2), Marco Ghisalberti (a1), Gregory N. Ivey (a1) (a2) and Nicole L. Jones (a1) (a2)


Particle capture, whereby suspended particles contact and adhere to a solid surface (a ‘collector’), is an important mechanism in a range of environmental processes. In aquatic systems, typically characterized by low collector Reynolds numbers (), the rate of particle capture determines the efficiencies of a range of processes such as seagrass pollination, suspension feeding by corals and larval settlement. In this paper, we use direct numerical simulation (DNS) of a two-dimensional laminar flow to accurately quantify the rate of capture of low-inertia particles by a cylindrical collector for (i.e. a range where there is no vortex shedding). We investigate the dependence of both the capture rate and maximum capture angle on both the collector Reynolds number and the ratio of particle size to collector size. The inner asymptotic expansion of Skinner (Q. J. Mech. Appl. Maths, vol. 28, 1975, pp. 333–340) for flow around a cylinder is extended and shown to provide an excellent framework for the prediction of particle capture and flow close to the leading face of a cylinder up to . Our results fill a gap between theory and experiment by providing, for the first time, predictive capability for particle capture by aquatic collectors in a wide (and relevant) Reynolds number and particle size range.


Corresponding author

Email address for correspondence:


Hide All
1. Ackerman, J. D. 1997 Submarine pollination in the marine angiosperm Zostera marina (Zosteraceae). II. Pollen transport in flow fields and capture by stigmas. Am. J. Bot. 84 (8), 11101119.
2. Ackerman, J. D. 2006 Sexual reproduction of seagrasses: pollination in the marine context. In Seagrasses: Biology, Ecology and Conservation (ed. Larkum, A. W. D., Orth, R. J. & Duarte, C. M. ). Springer.
3. Davies, C. N. 1950 Viscous flow transverse to a circular cylinder. Proc. Phys. Soc. Lond. B 63 (364), 288296.
4. Davies, C. N. & Peetz, C. V. 1956 Impingement of particles on a transverse cylinder. Proc. R. Soc. Lond. A 234 (1197), 268295.
5. Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics, 3rd edn. Springer.
6. Friedlander, S. K. 1967 Particle diffusion in low-speed flows. J. Colloid Interface Sci. 23 (2), 157164.
7. Friedlander, S. K. 2000 Smoke, Dust and Haze. Fundamentals of Aerosol Dynamics, 2nd edn. Oxford University Press.
8. Fuchs, N. A. 1964 The Mechanics of Aerosols, 1st edn. Pergamon.
9. Harvey, M., Bourget, E. & Ingram, R. G. 1995 Experimental-evidence of passive accumulation of marine bivalve larvae on filamentous epibenthic structures. Limnol. Oceanogr. 40 (1), 94104.
10. Haugen, N. E. L. & Kragset, S. 2010 Particle impaction on a cylinder in a crossflow as function of Stokes and Reynolds numbers. J. Fluid Mech. 661, 239261.
11. Humphries, S. 2009 Filter feeders and plankton increase particle encounter rates through flow regime control. Proc. Natl Acad. Sci. USA 106 (19), 78827887.
12. Huner, B. & Hussey, R. G. 1977 Cylinder drag at low Reynolds number. Phys. Fluids 20 (8), 12111218.
13. Kaplun, S. 1957 Low Reynolds number flow past a circular cylinder. J. Math. Mech. 6 (4), 595603.
14. Keller, J. B. & Ward, M. J. 1996 Asymptotics beyond all orders for a low Reynolds number flow. J. Engng Maths 30 (1–2), 253265.
15. Lamb, H. 1911 On the uniform motion of a sphere through a viscous fluid. Phil. Mag. Series 6 21 (121), 112121.
16. Lange, C. F., Durst, F. & Breuer, M. 1998 Momentum and heat transfer from cylinders in laminar crossflow at . Intl J. Heat Mass Transfer 41 (22), 34093430.
17. Lee, K. W. & Gieseke, J. A. 1980 Note on the approximation of interceptional collection efficiencies. J. Aerosol Sci. 11 (4), 335341.
18.OpenFOAM. 2012
19. Oseen, C. W. 1910 Über die Stokes’sche Formel, und über eine verwandte Aufgabe in der Hydrodynamik. Ark. Mat. Astron. Fys. 6 (29), 120.
20. Palmer, M. R., Nepf, H. M., Petterson, T. J. R. & Ackerman, J. D. 2004 Observations of particle capture on a cylindrical collector: implications for particle accumulation and removal in aquatic systems. Limnol. Oceanogr. 49 (1), 7685.
21. Patankar, S. V. 1980 Numerical Heat Transfer and Fluid Flow, 1st edn. Taylor and Francis.
22. Phillips, C. G. & Kaye, S. R. 1999 The influence of the viscous boundary layer on the critical Stokes number for particle impaction near a stagnation point. J. Aerosol Sci. 30 (6), 709718.
23. Posdziech, O. & Grundmann, R. 2007 A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder. J. Fluids Struct. 23 (3), 479499.
24. Proudman, I. & Pearson, J. R. A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2 (3), 237262.
25. Rubenstein, D. I. & Koehl, M. A. R. 1977 Mechanisms of filter feeding: some theoretical considerations. Am. Nat. 111 (981), 981994.
26. Sen, S., Mittal, S. & Biswas, G. 2009 Steady separated flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 620, 89119.
27. Shimeta, J. 1993 Diffusional encounter of submicrometre particles and small-cells by suspension feeders. Limnol. Oceanogr. 38 (2), 456465.
28. Shimeta, J. & Jumars, P. A. 1991 Physical mechanisms and rates of particle capture by suspension-feeders. Oceanogr. Mar. Biol. 29, 191257.
29. Shimeta, J. & Koehl, M. A. R. 1997 Mechanisms of particle selection by tentaculate suspension feeders during encounter, retention, and handling. J. Expl Mar. Biol. Ecol. 209 (1–2), 4773.
30. Skinner, L. A. 1975 Generalized expansions for slow flow past a cylinder. Q. J. Mech. Appl. Maths 28 (3), 333340.
31. Stokes, G. G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9 (Part II), 8106.
32. Tritton, D. J. 1959 Experiments on the flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 6 (4), 547567.
33. Veysey, J. & Goldenfeld, N. 2007 Simple viscous flows: from boundary layers to the renormalization group. Rev. Mod. Phys. 79 (3), 883927.
34. Wildish, D. & Kristmanson, D. 1997 Benthic Suspension Feeders and Flow, 1st edn. Cambridge University Press.
35. Wu, M. H., Wen, C. Y., Yen, R. H., Weng, M. C. & Wang, A. B. 2004 Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number. J. Fluid Mech. 515, 233260.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Particle capture and low-Reynolds-number flow around a circular cylinder

  • Alexis Espinosa-Gayosso (a1) (a2), Marco Ghisalberti (a1), Gregory N. Ivey (a1) (a2) and Nicole L. Jones (a1) (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.