## References

Alebregtse, N. C. & de Swart, H. E.
2016
Effect of river discharge and geometry on tides and net water transport in an estuarine network, an idealized model applied to the Yangtze Estuary. Cont. Shelf Res.
123, 29–49.

Bolla Pittaluga, M., Tambroni, N., Canestrelli, A., Slingerland, R., Lanzoni, S. & Seminara, G.
2015
Where river and tide meet: the morphodynamic equilibrium of alluvial estuaries. J. Geophys. Res.
120 (1), 75–94.

Buschman, F. A., Hoitink, A. J. F., van der Vegt, M. & Hoekstra, P.
2009
Subtidal water level variation controlled by river flow and tides. Water Resour. Res.
45 (10), 1–12.

Cai, H., Savenije, H. H. G., Jiang, C., Zhao, L. & Yang, Q.
2016
Analytical approach for determining the mean water level profile in an estuary with substantial fresh water discharge. Hydrol. Earth Sys. Sci
20 (3), 1177–1195.

Cai, H., Savenije, H. H. G. & Toffolon, M.
2014
Linking the river to the estuary: influence of river discharge on tidal damping. Hydrol. Earth Sys. Sci.
18 (1), 287–304.

Cartwright, D. E. & Tayler, R. J.
1971
New computations of the tide-generating potential. Geophys. J. Intl
23 (1), 45–73.

Cunge, J. A., Holly, F. M. & Verwey, A.
1980
Practical Aspects of Computational River Hydraulics, Monographs and Surveys in Water Resources Engineering, vol. 3. Pitman.

Dai, A. & Trenberth, K. E.
2002
Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J. Hydrometeorol.
3 (6), 660–687.

Dalrymple, R. W., Kurcinka, C. E., Jablonski, B. V. J. G., Ichaso, A. A. & Mackay, D. A.
2015
Deciphering the relative importance of fluvial and tidal processes in the fluvial–marine transition. In Developments in Sedimentology, vol. 68, pp. 3–45. Elsevier.

Doodson, A. T.
1921
The harmonic development of the tide-generating potential. Proc. R. Soc. Lond. A
100 (704), 305–329.

Dronkers, J. J.
1964
Tidal Computations in Rivers and Coastal Waters. North-Holland.

Egbert, G. D. & Erofeeva, S. Y.
2002
Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol.
19 (2), 183–204.

Foreman, M. G. G.
1996
Manual for Tidal Heights Analysis and Prediction. Canada Institute of Ocean Sciences Pacific Marine Science Report, Institute of Ocean Sciences, Patricia Bay.

Frazier, T. G., Wood, N., Yarnal, B. & Bauer, D. H.
2010
Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida. Appl. Geog.
30 (4), 490–505.

Friedrichs, C. T.
2010
Barotropic tides in channelized estuaries. In Contemporary Issues in Estuarine Physics (ed. Valle-Levinson, A.), pp. 27–61. Cambridge University Press.

Friedrichs, C. T. & Madsen, O. S.
1992
Nonlinear diffusion of the tidal signal in frictionally dominated embayments. J. Geophys. Res.
97 (C4), 5637–5650.

Garel, E. & Cai, H.
2018
Effects of tidal-forcing variations on tidal properties along a narrow convergent estuary. Estuar. Coast.
41 (7), 1924–1942.

Godin, G.
1984
The tide in rivers. Intl Hydrogr. Rev.
61 (2), 159–170.

Godin, G.
1985
Modification of river tides by the discharge. J. Waterways Port Coast. Ocean Engng
111 (2), 257–274.

Godin, G.
1991a
Frictional effects in river tides. In Tidal Hydrodynamics, pp. 379–402. John Wiley & Sons.

Godin, G.
1991b
The analysis of tides and currents. In Tidal Hydrodynamics, pp. 675–709. John Wiley & Sons.

Godin, G.
1999
The propagation of tides up rivers with special considerations on the upper Saint Lawrence River. Estuar. Coast. Shelf Sci.
48 (3), 307–324.

Godin, G. & Martínez, A.
1994
Numerical experiments to investigate the effects of quadratic friction on the propagation of tides in a channel. Cont. Shelf Res.
14 (7), 723–748.

Green, G.
1838
On the motion of waves in a variable canal of small depth and width. Trans. Camb. Phil. Soc.
6, 225–230.

Guo, L., van der Wegen, M., Jay, D. A., Matte, P., Wang, Z. B., Roelvink, D. & He, Q.
2015
River-tide dynamics: exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary. J. Geophys. Res.
120 (5), 3499–3521.

Hoitink, A. J. F. & Jay, D. A.
2016
Tidal river dynamics: implications for deltas. Rev. Geophys.
54 (1), 240–272.

Horrevoets, A. C., Savenije, H. H. G., Schuurman, J. N. & Graas, S.
2004
The influence of river discharge on tidal damping in alluvial estuaries. J. Hydrol.
294 (4), 213–228.

Ippen, A. T.
1966
Estuary and Coastline Hydrodynamics. McGraw-Hill.

Jay, D. A.
1991
Green’s law revisited: tidal long-wave propagation in channels with strong topography. J. Geophys. Res.
20 (C11), 20585–20598.

Jay, D. A. & Flinchem, E. P.
1997
Interaction of fluctuating river flow with a barotropic tide: a demonstration of wavelet tidal analysis methods. J. Geophys. Res.
102 (C3), 5705–5720.

Jay, D. A., Leffler, K., Diefenderfer, H. L. & Borde, A. B.
2015
Tidal-fluvial and estuarine processes in the lower Columbia River: I. Along-channel water level variations, Pacific Ocean to Bonneville Dam. Estuar. Coast.
38 (2), 415–433.

Kästner, K., Hoitink, A. J. F., Torfs, P. J. J. F., Vermeulen, B., Ningsih, N. S. & Pramulya, M.
2018
Prerequisites for accurate monitoring of river discharge based on fixed-location velocity measurements. Water Resour. Res.
54 (2), 1058–1076.

Kästner, K., Hoitink, A. J. F., Vermeulen, B., Geertsema, T. J. & Ningsih, N. S.
2017
Distributary channels in the fluvial to tidal transition zone. J. Geophys. Res.
3 (122), 696–710; 2016JF004075.

Kukulka, T. & Jay, D. A.
2003a
Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat. J. Geophys. Res.
108 (C9), 1–20.

Kukulka, T. & Jay, D. A.
2003b
Impacts of Columbia River discharge on salmonid habitat: 1. A nonstationary fluvial tide model. J. Geophys. Res.
108 (C9), 1–17.

Lamb, H.
1932
Hydrodynamics. Cambridge University Press.

LeBlond, P. H.
1978
On tidal propagation in shallow rivers. J. Geophys. Res.
83 (C9), 4717–4721.

LeBlond, P. H.
1979
Forced fortnightly tides in shallow rivers. Atmos.-Ocean
17 (3), 253–264.

Li, C. & Valle-Levinson, A.
1999
A two-dimensional analytic tidal model for a narrow estuary of arbitrary lateral depth variation: the intratidal motion. J. Geophys. Res.
104 (C10), 23525–23543.

Lighthill, J.
2001
Waves in Fluids. Cambridge University Press.

Lorentz, H. A.
1926
Verslag Staatscommissie Zuiderzee 1918–1926, pp. 1–345. Algemene Landsdrukkerij,’s-Gravenhage.

Nienhuis, J. H., Hoitink, A. J. F. & Törnqvist, T. E.
2018
Future change to tide-influenced deltas. Geophys. Res. Lett.
45 (8), 3499–3507.

Parker, B. B.1984 Frictional effects on the tidal dynamics of a shallow estuary. PhD thesis, Johns Hopkins University, Baltimore, MD.

Parker, B. B.
1991
The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions. In Tidal Hydrodynamics, pp. 125–152. John Wiley & Sons.

Parker, B. B.
2007
Tidal Analysis and Prediction. NOAA Special Publication.

Prandle, D. & Lane, A.
2015
Sensitivity of estuaries to sea level rise: vulnerability indices. Estuar. Coast. Shelf Sci.
160, 60–68.

Pritchard, D. W.
1967
What is an estuary: physical viewpoint. In Estuaries, vol. 83 (ed. Lauff, G. H.), pp. 3–5. American Association for the Advancement of Science.

Pugh, D. T.
1987
Tides, Surges and Mean Sea-Level: A Handbook for Engineers and Scientists. John Wiley.

Ray, R., Egbert, G. & Erofeeva, S.
2011
Tide predictions in shelf and coastal waters: status and prospects. In Coastal Altimetry, pp. 191–216. Springer.

Reef, K. R. G., Lipari, G., Roos, P. C. & Hulscher, S. J. M. H.
2018
Time-varying storm surges on lorentz’s wadden sea networks. Ocean Dyn.
68 (8), 1051–1065.

Richards, K.
1982
Rivers: form and Processes in Alluvial Channels. Methuen.

van Rijn, L. C.
1984
Sediment transport, part III: bed forms and alluvial roughness. J. Hydraul. Engng.
110 (12), 1733–1754.

van Rijn, L. C.
2011
Analytical and numerical analysis of tides and salinities in estuaries. Part I. Tidal wave propagation in convergent estuaries. Ocean Dyn.
61 (11), 1719–1741.

Sassi, M. G. & Hoitink, A. J. F.
2013
River flow controls on tides and tide-mean water level profiles in a tidal freshwater river. J. Geophys. Res.
118 (9), 4139–4151.

Savenije, H. H. G.
2001
A simple analytical expression to describe tidal damping or amplification. J. Hydrol.
243 (3), 205–215.

Savenije, H. H. G.
2012
Salinity and Tides in Alluvial Estuaries, 2nd completely revised edn. salinityandtides.com.
Savenije, H. H. G.
2015
Prediction in ungauged estuaries: an integrated theory. Water Resourc. Res.
51 (4), 2464–2476.

Savenije, H. H. G., Toffolon, M., Haas, J. & Veling, E. J. M.
Analytical description of tidal dynamics in convergent estuaries. J. Geophys. Res.
113 (C10), 2008.

Schönfeld, J. C.1951 Propagation of tides and similar waves, Staatsdrukkerij- en uitgeversbedrijf Den Haag.

Seminara, G., Pittaluga, M. B. & Tambroni, N.
2012
Morphodynamic equilibrium of tidal channels. In Environmental Fluid Mechanics-Memorial Volume in Honour of Prof. Gerhard Jirka (ed. Rodi, W. & Uhlmann, M.), pp. 153–174. CRC.

Souchay, J., Mathis, S. & Tokieda, T.
2012
Tides in Astronomy and Astrophysics, vol. 861. Springer.

Speer, P. E. & Aubrey, D. G.
1985
A study of non-linear tidal propagation in shallow inlet/estuarine systems. Part II. Theory. Estuar. Coast. Shelf Sci.
21 (2), 207–224.

Terra, G. M., van de Berg, W. J. & Maas, L. R. M.
2005
Experimental verification of Lorentz linearization procedure for quadratic friction. Fluid Dyn. Res.
36 (3), 175–188.

Tolkova, E.
2018
Tsunami Propagation in Tidal Rivers. Springer.

Vatankhah, A. R. & Easa, S. M.
2011
Direct integration of Manning-based gradually varied flow equation. In Proceedings of the Institution of Civil Engineers-Water Management, vol. 164, pp. 257–264. Thomas Telford Ltd.

Wilmer, A. III & Costa, G. B.
2008
Solving second-order differential equations with variable coefficients. Intl J. Math. Educ. Sci. Technol.
39 (2), 238–243.

Witting, J. M.
1981
A note on Green’s law. J. Geophys. Res.
86 (C3), 1995–1999.

Woodworth, P. L.
2017
Differences between mean tide level and mean sea level. J. Geodesy
91 (1), 69–90.