Skip to main content Accessibility help

Receptivity characteristics of under-expanded supersonic impinging jets

  • Shahram Karami (a1), Paul C. Stegeman (a1), Andrew Ooi (a2), Vassilis Theofilis (a3) (a4) and Julio Soria (a1) (a5)...


The receptivity of an under-expanded supersonic impinging jet flow at a sharp nozzle lip to acoustic impulse disturbances is investigated as a function of geometric and flow parameters. The under-expanded supersonic jets emanate from an infinite-lipped nozzle, i.e. the nozzle exit is a circular hole in a flat plate. Two specific cases have been investigated corresponding to nozzle-to-wall distances of $h=2d$ and $5d$ , where $d$ is the jet diameter, at a nozzle pressure ratio of 3.4 and a Reynolds number of 50 000. Receptivity in this study is defined as originally coined by Morkovin (Tech. Rep. AFFDL TR, 1969, pp. 68–149; see also Reshotko, AGARD Special Course on Stability and Transition of Laminar Flow, N84-33757 23-34) as the internalisation of an external disturbance into the initial condition that either initiates or sustains a vortical fluid dynamic instability. Notionally, receptivity can be considered as a transfer function between the external disturbance and the initial conditions of the vortical instability. In the case of under-expanded supersonic impinging jet flow subjected to an acoustic disturbance, this transfer function is located at the nozzle lip and, thus, is amenable to an impulse response analysis using the linearised compressible three-dimensional Navier–Stokes equations. In this study, the transfer function at the nozzle lip is defined as the ratio of the output flow energy to the input acoustic energy of the acoustic disturbance. The sensitivity of this transfer function to the angular acoustic disturbance location, its azimuthal mode number and Strouhal number has been investigated for the two under-expanded supersonic impinging jet flow cases. It is found that for both the $h=2d$ and $5d$ cases, acoustic disturbances located at angles greater than $80^{\circ }$ from the jet centreline, with Strouhal numbers in the range between 0.7 and 6.5, have the highest receptivity for all azimuthal mode numbers investigated, except the azimuthal mode number 2 in the case of $h=5d$ . The case with $h=5d$ is found to also have high receptivity to acoustic disturbances located at angles between $15^{\circ }$ and $50^{\circ }$ from the jet centreline for acoustic disturbances of all azimuthal mode numbers.


Corresponding author

Email address for correspondence:


Hide All
Ackeret, J. 1927 Gasdynamik. In Mechanik der Flüssigen und Gasförmigen Körper (ed. Ackeret, J., Betz, A., Forchheimer, P., Gyemant, A., Hopf, L., Lagally, M. & Grammel, R.), pp. 289342. Springer.
Amili, O., Edgington-Mitchell, D., Honnery, D. & Soria, J. 2016 Interaction of a supersonic underexpanded jet with a flat plate. In Fluid–Structure–Sound Interactions and Control, pp. 247251. Springer.
Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75 (5), 750.
Barone, M. F. & Lele, S. K. 2005 Receptivity of the compressible mixing layer. J. Fluid Mech. 540, 301335.
Bechert, D. W. 1988 Excitation of instability waves in free shear layers. Part 1. Theory. J. Fluid Mech. 186, 4762.
Bechert, D. W. & Stahl, B. 1988 Excitation of instability waves in free shear layers. Part 2. Experiments. J. Fluid Mech. 186, 6384.
Bendat, J. S. & Piersol, A. G. 2011 Random Data: Analysis and Measurement Procedures, vol. 729. Wiley.
Beneddine, S., Sipp, D., Arnault, A., Dandois, J. & Lesshafft, L. 2016 Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798, 485504.
Bodony, D. J. & Lele, S. K. 2005 On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets. Phys. Fluids 17 (8), 085103.
Bogey, C., Marsden, O. & Bailly, C. 2011 Large-eddy simulation of the flow and acoustic fields of a Reynolds number 105 subsonic jet with tripped exit boundary layers. Phys. Fluids 23 (3), 035104.
Dauptain, A., Cuenot, B. & Gicquel, L. Y. M. 2010 Large eddy simulation of stable supersonic jet impinging on flat plate. AIAA J. 48 (10), 23252338.
Donaldson, C. & Snedeker, R. S. 1971 A study of free jet impingement. Part 1. Mean properties of free and impinging jets. J. Fluid Mech. 45 (2), 281319.
Edgington-Mitchell, D., Honnery, D. R. & Soria, J. 2014a The underexpanded jet Mach disk and its associated shear layer. Phys. Fluids 26 (9), 096101.
Edgington-Mitchell, D., Oberleithner, K., Honnery, D. R. & Soria, J. 2014b Coherent structure and sound production in the helical mode of a screeching axisymmetric jet. J. Fluid Mech. 748, 822847.
Emden, R. 1899 Ueber die Ausströmungserscheinungen permanenter Gase. Ann. Phys. 305 (9), 264289.
Erturk, E. & Corke, T. C. 2001 Boundary layer leading-edge receptivity to sound at incidence angles. J. Fluid Mech. 444, 383407.
Gojon, R. & Bogey, C. 2017 Flow structure oscillations and tone production in underexpanded impinging round jets. AIAA J. 55 (6), 17921805.
Gojon, R., Bogey, C. & Marsden, O.2015 Large-eddy simulation of underexpanded round jets impinging on a flat plate 4 to 9 radii downstream from the nozzle. AIAA Paper 2210, 2015.
Haddad, O. M. & Corke, T. C. 1998 Boundary layer receptivity to free-stream sound on parabolic bodies. J. Fluid Mech. 368, 126.
Hammond, D. A. & Redekopp, L. G. 1997 Global dynamics of symmetric and asymmetric wakes. J. Fluid Mech. 331, 231260.
Henderson, B., Bridges, J. & Wernet, M. 2005 An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets. J. Fluid Mech. 542, 115137.
Henderson, B. & Powell, A. 1993 Experiments concerning tones produced by an axisymmetric choked jet impinging on flat plates. J. Sound Vib. 168 (2), 307326.
Henderson, L. F. 1966 Experiments on the impingement of a supersonic jet on a flat plate. Z. Angew. Math. Phys. 17 (5), 553569.
Ho, C.-M. & Nosseir, N. S. 1981 Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 105, 119142.
Illingworth, S. J., Monty, J. P. & Marusic, I. 2018 Estimating large-scale structures in wall turbulence using linear models. J. Fluid Mech. 842, 146162.
Jones, D. S. & Morgan, J. D. 1973 The instability due to acoustic radiation striking a vortex sheet on a supersonic stream. Proc. R. Soc. Edin. A 71 (2), 121140.
Jones, D. S. & Morgan, J. P. 1972 The instability of a vortex sheet on a subsonic stream under acoustic radiation. In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 72, pp. 465488. Cambridge University Press.
Karami, S., Edgington-Mitchell, D. & Soria, J. 2018a Large eddy simulation of supersonic under-expanded jets impinging on a flat plate. In Proceedings of the 11th Australasian Heat and Mass Transfer Conference, p. 12. Australasian Fluid and Thermal Engineering Society (AFTES).
Karami, S. & Soria, J. 2018 Analysis of coherent structures in an under-expanded supersonic impinging jet using spectral proper orthogonal decomposition (SPOD). Aerospace 5 (3), 73.
Karami, S., Stegeman, P. C., Ooi, A. & Soria, J. 2019 High-order accurate large-eddy simulations of compressible viscous flow in cylindrical coordinates. Comput. Fluids 191, 104241.
Karami, S., Stegeman, P. C., Theofilis, V., Schmid, P. J. & Soria, J. 2018b Linearised dynamics and non-modal instability analysis of an impinging under-expanded supersonic jet. In Journal of Physics: Conference Series, vol. 1001, 012019. IOP Publishing.
Kawai, S. & Lele, S. K. 2010 Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J. 48 (9), 20632083.
Kennedy, C. A. & Carpenter, M. H. 1994 Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Maths 14 (4), 397433.
Kennedy, C. A., Carpenter, M. H. & Lewis, R. M. 2000 Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Maths 35 (3), 177219.
Kerschen, E. 1996 Receptivity of shear layers to acoustic disturbances. In Theroretical Fluid Mechanics Conference, p. 2135. American Institute of Aeronautics and Astronautics (AIAA).
Li, S., Muddle, B., Jahedi, M. & Soria, J. 2012 A numerical investigation of the cold spray process using underexpanded and overexpanded jets. J. Therm. Spray Technol. 21, 108120.
Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4 (3), 633635.
Mason-Smith, N., Edgington-Mitchell, D., Buchmann, N. A., Honnery, D. R. & Soria, J. 2015 Shock structures and instabilities formed in an underexpanded jet impinging on to cylindrical sections. Shock Waves 25 (6), 611622.
Mittal, S. 2008 Global linear stability analysis of time-averaged flows. Intl J. Numer. Meth. Fluids 58 (1), 111118.
Morgan, J. D. 1974 The interaction of sound with a semi-infinite vortex sheet. Q. J. Mech. Appl. Maths 27 (4), 465487.
Morkovin, M. V.1969 Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies. Tech. Rep. AFFDL TR, 68–149.
Oberleithner, K., Rukes, L. & Soria, J. 2014 Mean flow stability analysis of oscillating jet experiments. J. Fluid Mech. 757, 132.
Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 458, 407417.
Poinsot, T. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.
Powell, A. 1988 The sound-producing oscillations of round underexpanded jets impinging on normal plates. J. Acoust. Soc. Am. 83 (2), 515533.
Prandtl, L. 1904 Über die stationären Wellen in einem Gasstrahl. Phys. Z. 5, 5996010.
Prandtl, L. 1907 Neue Untersuchungen über die strömende Bewegung der Gase und Dämpfe. Phys. Z. 8, 2330.
Prandtl, L. 1913 Gasbewegung. Handwörterbuch der Naturwissenschaften 4, 544560.
Raman, G. 1997 Cessation of screech in underexpanded jets. J. Fluid Mech. 336, 6990.
Raman, G. & Srinivasan, K. 2009 The powered resonance tube: from Hartmann’s discovery to current active flow control applications. Prog. Aerosp. Sci. 45 (4-5), 97123.
Reshotko, E. 1976 Boundary-layer stability and transition. Annu. Rev. Fluid Mech. 8 (1), 311349.
Reshotko, E. 1984 Environment and receptivity. In AGARD Special Course on Stability and Transition of Laminar Flow (N84-33757 23-34).
Risborg, A. & Soria, J. 2009 High-speed optical measurements of an underexpanded supersonic jet impinging on an inclined plate. In 28th International Congress on High-Speed Imaging and Photonics (ed. Kleine, H. & Guillen, M. P. B.), vol. 7126, pp. 477487. International Society for Optics and Photonics, SPIE.
Rogler, H. L. & Reshotko, E. 1975 Disturbances in a boundary layer introduced by a low intensity array of vortices. SIAM J. Appl. Maths 28 (2), 431462.
Rossiter, J. E.1964 Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Tech. Rep. Ministry of Aviation; Royal Aircraft Establishment; RAE Farnborough.
Rowley, C. W.2002 Modeling, simulation, and control of cavity flow oscillations. PhD thesis, California Institute of Technology, Pasadena, CA.
Rowley, C. W., Colonius, T. & Basu, A. J. 2002 On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J. Fluid Mech. 455, 315346.
Ruban, A. I., Bernots, T. & Kravtsova, M. A. 2016 Linear and nonlinear receptivity of the boundary layer in transonic flows. J. Fluid Mech. 786, 154189.
Sartor, F., Mettot, C., Bur, R. & Sipp, D. 2015 Unsteadiness in transonic shock-wave/boundary-layer interactions: experimental investigation and global stability analysis. J. Fluid Mech. 781, 550577.
Sasaki, K., Vinuesa, R., Cavalieri, A. V. G., Schlatter, P. & Henningson, D. S. 2019 Transfer functions for flow predictions in wall-bounded turbulence. J. Fluid Mech. 864, 708745.
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.
Soria, J. & Risborg, A.2019 High-speed optical measurements of an under-expanded supersonic jet impinging on an inclined plate. Available at:
Stegeman, P. C., Ooi, A. & Soria, J. 2015 Proper orthogonal decomposition and dynamic mode decomposition of under-expanded free-jets with varying nozzle pressure ratios. In Instability and Control of Massively Separated Flows, pp. 8590. Springer.
Stegeman, P. C., Pèrez, J. M., Soria, J. & Theofilis, V. 2016a Inception and evolution of coherent structures in under-expanded supersonic jets. In Journal of Physics: Conference Series, vol. 708, 012015.
Stegeman, P. C., Soria, J. & Ooi, A. 2016b Interaction of shear layer coherent structures and the stand-off shock of an under-expanded circular impinging jet. In Fluid–Structure–Sound Interactions and Control, pp. 241245. Springer.
Tam, C. K. W. 1986 Excitation of instability waves by sound A physical interpretation. J. Sound Vib. 105 (1), 169172.
Tam, C. K. W. & Ahuja, K. K. 1990 Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech. 214, 6787.
Turton, S. E., Tuckerman, L. S. & Barkley, D. 2015 Prediction of frequencies in thermosolutal convection from mean flows. Phys. Rev. E 91 (4), 043009.
Wanderley, J. B. V. & Corke, T. C. 2001 Boundary layer receptivity to free-stream sound on elliptic leading edges of flat plates. J. Fluid Mech. 429, 121.
Weightman, J. L., Amili, O., Honnery, D., Edgington-Mitchell, D. & Soria, J. 2019 Nozzle external geometry as a boundary condition for the azimuthal mode selection in an impinging underexpanded jet. J. Fluid Mech. 862, 421448.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title

Karami et al. supplementary movie 1
The density gradient for the under-expanded supersonic impinging jets with the nozzle-pressure ratio of 3.4 and the nozzle-to-wall distance of 2d.

 Video (9.9 MB)
9.9 MB

Karami et al. supplementary movie 2
The density gradient for the under-expanded supersonic impinging jets with the nozzle-pressure ratio of 3.4 and the nozzle-to-wall distance of 5d.

 Video (46.8 MB)
46.8 MB

Receptivity characteristics of under-expanded supersonic impinging jets

  • Shahram Karami (a1), Paul C. Stegeman (a1), Andrew Ooi (a2), Vassilis Theofilis (a3) (a4) and Julio Soria (a1) (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.