Achenbach, J. D.
2002
Use of elastodynamic reciprocity theorems for field calculations. In Integral Methods in Science and Engineering (ed. Schiavone, P., Constanda, C. & Mioduchowski, A.), pp. 1–14. Birkhäuser.
Achenbach, J. D.
2003
Reciprocity in Elastodynamics. Cambridge University Press.
Achenbach, J. D.
2014
A new use of the elastodynamic reciprocity theorem. Math. Mech. Solids
19 (1), 5–18.
Acree, W. E.
1984
Empirical expression for predicting surface-tension of liquid-mixtures. J. Colloid Interface Sci.
101, 575–576.
Acrivos, A.
2015
Reflections on a rheologist: Howard Brenner (1929–2014). Rheol. Bull.
84 (1), 8–11.
Acrivos, A. & Taylor, T. D.
1962
Heat and mass transfer from single spheres in Stokes flow. Phys. Fluids
5 (4), 387–394.
Adamson, A. W. & Gast, A. P.
1997
Physical Chemistry of Surfaces. Wiley.
Ajdari, A. & Stone, H. A.
1999
A note on swimming using internally generated traveling waves. Phys. Fluids
11 (5), 1275–1277.
Anderson, J. L.
1989
Colloid transport by interfacial forces. Annu. Rev. Fluid Mech.
21 (1), 61–99.
Barber, J. R.
2002
Elasticity. Springer.
Batchelor, G. K.
1970
The stress system in a suspension of force-free particles. J. Fluid Mech.
41 (3), 545–570.
Becker, L. E., McKinley, G. H. & Stone, H. A.
1996
Sedimentation of a sphere near a plane wall: weak non-Newtonian and inertial effects. J. Non-Newtonian Fluid Mech.
63 (2), 201–233.
Bell, C. G., Byrne, H. M., Whiteley, J. P. & Waters, S. L.
2014
Heat or mass transfer at low Péclet number for Brinkman and Darcy flow round a sphere. Intl J. Heat Mass Transfer
68, 247–258.
Betti, E.
1872
Teoria della elasticità. Il Nuovo Cimento
7 (1), 69–97.
Brady, J. F.
2011
Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. J. Fluid Mech.
667, 216–259.
Brady, J. F. & Bossis, G.
1988
Stokesian dynamics. Annu. Rev. Fluid Mech.
20 (1), 111–157.
Brenner, H.
1958
Dissipation of energy due to solid particles suspended in a viscous liquid. Phys. Fluids
1 (4), 338–346.
Brenner, H.
1961
The Oseen resistance of a particle of arbitrary shape. J. Fluid Mech.
11 (4), 604–610.
Brenner, H.
1962
Effect of finite boundaries on the Stokes resistance of an arbitrary particle. J. Fluid Mech.
12 (1), 35–48.
Brenner, H.
1963a
Forced convection heat and mass transfer at small Péclet numbers from a particle of arbitrary shape. Chem. Engng Sci.
18 (2), 109–122.
Brenner, H.
1963b
The Stokes resistance of an arbitrary particle. Chem. Engng Sci.
18 (1), 1–25.
Brenner, H.
1964a
The Stokes resistance of a slightly deformed sphere. Chem. Engng Sci.
19 (8), 519–539.
Brenner, H.
1964b
The Stokes resistance of an arbitrary particle. IV: Arbitrary fields of flow. Chem. Engng Sci.
19 (10), 703–727.
Brenner, H.
1967
On the invariance of the heat-transfer coefficient to flow reversal in Stokes and potential streaming flows past particles of arbitrary shape. J. Math. Phys. Sci.
1, 173–179.
Brenner, H.
1970a
Invariance of the overall mass transfer coefficient to flow reversal during Stokes flow past one or more particles of arbitrary shape. Chem. Engng Prog. Symp. Ser.
66, 123–126.
Brenner, H.
1970b
Pressure drop due to the motion of neutrally buoyant particles in duct flows. J. Fluid Mech.
43 (4), 641–660.
Brenner, H.
1971
Pressure drop due to the motion of neutrally buoyant particles in duct flows. II. Spherical droplets and bubbles. Ind. Engng Chem. Fundam.
10 (4), 537–543.
Brenner, H. & Cox, R. G.
1963
The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J. Fluid Mech.
17 (4), 561–595.
Brenner, H. & Haber, S.
1984
Symbolic operator solutions of Laplace’s and Stokes’ equations Part 1. Laplace’s equation. Chem. Engng Commun.
27 (5–6), 283–295.
Brenner, H. & Nadim, A.
1996
The Lorentz reciprocal theorem for micropolar fluids. In The Centenary of a Paper on Slow Viscous Flow by the Physicist H. A. Lorentz, pp. 169–176. Springer.
Brinkman, H. C.
1947
A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A
1, 27–34.
Brinkman, H. C.
1948
On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. A
1, 81–86.
Brunet, E. & Ajdari, A.
2004
Generalized Onsager relations for electrokinetic effects in anisotropic and heterogeneous geometries. Phys. Rev. E
69 (1), 016306.
Brunn, P.
1976a
The behavior of a sphere in non-homogeneous flows of a viscoelastic fluid. Rheol. Acta
15 (11-12), 589–611.
Brunn, P.
1976b
The slow motion of a sphere in a second-order fluid. Rheol. Acta
15 (3–4), 163–171.
Brunn, P.
1980
The motion of rigid particles in viscoelastic fluids. J. Non-Newtonian Fluid Mech.
7 (4), 271–288.
Bungay, P. M. & Brenner, H.
1973
Pressure drop due to the motion of a sphere near the wall bounding a Poiseuille flow. J. Fluid Mech.
60 (1), 81–96.
Candelier, F., Einarsson, J. & Mehlig, B.
2016
Angular dynamics of a small particle in turbulence. Phys. Rev. Lett.
117 (20), 204501.
Carrier, G. F.1953 On slow viscous flow. Tech. Rep. Final Report, Office of Naval Research Contract Nonr-653 (00).
Caswell, B.
1972
The stability of particle motion near a wall in Newtonian and non-Newtonian fluids. Chem. Engng Sci.
27 (2), 373–389.
Chan, P. C.-H. & Leal, L. G.
1979
The motion of a deformable drop in a second-order fluid. J. Fluid Mech.
92 (1), 131–170.
Charlton, T. M.
1960
A historical note on the reciprocal theorem and theory of statically indeterminate frameworks. Nature
187 (4733), 231.
Clebsch, R. F. A.
1862
Theorie der Elasticität fester Körper. B. G. Teubner.
Cox, R. G. & Brenner, H.
1968
The lateral migration of solid particles in Poiseuille flow – I theory. Chem. Engng Sci.
23 (2), 147–173.
Crowdy, D. G.
2013
Wall effects on self-diffusiophoretic Janus particles: a theoretical study. J. Fluid Mech.
735, 473–498.
Davis, A. M. J.
1990
Stokes drag on a disk sedimenting toward a plane or with other disks; additional effects of a side wall or free-surface. Phys. Fluids
2, 301–312.
Day, R. F. & Stone, H. A.
2000
Lubrication analysis and boundary integral simulations of a viscous micropump. J. Fluid Mech.
416, 197–216.
De Hoop, A. T.
1995
Handbook of Radiation and Scattering of Waves. Academic Press.
Debye, P. & Bueche, A. M.
1948
Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J. Chem. Phys.
16, 573–579.
Dörr, A., Hardt, S., Masoud, H. & Stone, H. A.
2016
Drag and diffusion coefficients of a spherical particle attached to a fluid–fluid interface. J. Fluid Mech.
790, 607–618.
Durlofsky, L. & Brady, J. F.
1987
Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids
30, 3329–3341.
Elfring, G. J. & Lauga, E.
2015
Theory of locomotion through complex fluids. In Complex Fluids in Biological Systems (ed. Spagnolie, S. E.), chap. 8, pp. 283–317. Springer.
Elfring, G. J.
2015
A note on the reciprocal theorem for the swimming of simple bodies. Phys. Fluids
27 (2), 023101.
Elfring, G. J.
2017
Force moments of an active particle in a complex fluid. J. Fluid Mech.
829, R3.
Elfring, G. J. & Goyal, G.
2016
The effect of gait on swimming in viscoelastic fluids. J. Non-Newtonian Fluid Mech.
234, 8–14.
Elfring, G. J., Leal, L. G. & Squires, T. M.
2016
Surface viscosity and Marangoni stresses at surfactant laden interfaces. J. Fluid Mech.
792, 712–739.
Eversman, W.
2001
A reverse flow theorem and acoustic reciprocity in compressible potential flows in ducts. J. Sound Vib.
246 (1), 71–95.
Fair, M. C. & Anderson, J. L.
1989
Electrophoresis of nonuniformly charged ellipsoidal particles. J. Colloid Interface Sci.
127 (2), 388–400.
Felderhof, B. U.
1983
Reciprocity in electrohydrodynamics. Physica A
122 (3), 383–396.
Felderhof, B. U. & Jones, R. B.
1994a
Inertial effects in small-amplitude swimming of a finite body. Physica A
202 (1), 94–118.
Felderhof, B. U. & Jones, R. B.
1994b
Small-amplitude swimming of a sphere. Physica A
202 (1), 119–144.
Flax, A. H.
1953
Reverse flow and variational theorems for lifting surfaces in non-stationary compressible flow. J. Aero. Sci.
20 (2), 120–126.
Fleury, R., Sounas, D., Haberman, M. R. & Alù, A.
2015
Nonreciprocal acoustics. Acoust. Today
11 (3), 14–21.
Ford, M. L. & Nadim, A.
1994
Thermocapillary migration of an attached drop on a solid surface. Phys. Fluids
6 (9), 3183–3185.
Ganatos, P., Pfeffer, R. & Weinbaum, S.
1980a
A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel motion. J. Fluid Mech.
99 (4), 755–783.
Ganatos, P., Weinbaum, S. & Pfeffer, R.
1980b
A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular motion. J. Fluid Mech.
99 (4), 739–753.
Godin, O. A.
1997a
Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid. Wave Motion
25 (2), 143–167.
Godin, O. A.
1997b
Reciprocity relations and energy conservation for waves in the system: inhomogeneous fluid flow–anisotropic solid body. Acoust. Phys.
43, 688–693.
Goldstein, R. E.
2011
Evolution of biological complexity. In Biological Physics, pp. 123–139. Springer.
Golestanian, R., Liverpool, T. B. & Ajdari, A.
2007
Designing phoretic micro-and nano-swimmers. New J. Phys.
9 (5), 126.
Gonzalez-Rodriguez, D. & Lauga, E.
2009
Reciprocal locomotion of dense swimmers in Stokes flow. J. Phys.: Condens. Matter
21 (20), 204103.
Guazzelli, E. & Morris, J. F.
2011
A Physical Introduction to Suspension Dynamics, vol. 45. Cambridge University Press.
Haj-Hariri, H., Nadim, A. & Borhan, A.
1990
Effect of inertia on the thermocapillary velocity of a drop. J. Colloid Interface Sci.
140 (1), 277–286.
Haj-Hariri, H., Nadim, A. & Borhan, A.
1993
Reciprocal theorem for concentric compound drops in arbitrary Stokes flows. J. Fluid Mech.
252, 265–277.
Happel, J. & Brenner, H.
1983
Low Reynolds Number Hydrodynamics, with Special Applications to Particulate Media. Martinus Nijhoff.
Hauge, E. H. & Martin-Löf, A.
1973
Fluctuating hydrodynamics and brownian motion. J. Stat. Phys.
7, 259–281.
Heaslet, M. A. & Spreiter, J. R.1953 Reciprocity relations in aerodynamics. NACA Report 1119, 253–268.
von Helmholtz, H.
1856
Handbuch der Physiologischen Optik. Leopold Voss.
von Helmholtz, H.
1887
Uber die physikalische bedeutung des prinzips der kleinsten wirkung. J. Reine Angew. Math.
100, 137–166.
Higdon, J. J. L. & Kojima, M.
1981
On the calculation of Stokes flow past porous particles. Intl J. Multiphase Flow
7 (6), 719–727.
Hinch, E. J.
1972
Note on the symmetries of certain material tensors for a particle in Stokes flow. J. Fluid Mech.
54 (3), 423–425.
Hinch, E. J.
1991
Perturbation Methods. Cambridge University Press.
Ho, B. P. & Leal, L. G.
1974
Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech.
65 (2), 365–400.
Ho, B. P. & Leal, L. G.
1976
Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech.
76 (4), 783–799.
Howell, L. L.
2001
Compliant Mechanisms. John Wiley & Sons.
Hu, H. H. & Joseph, D. D.
1999
Lift on a sphere near a plane wall in a second-order fluid. J. Non-Newtonian Fluid Mech.
88 (1-2), 173–184.
Jafari Kang, S., Dehdashti, E., Vandadi, V. & Masoud, H.
2019
Optimal viscous damping of vibrating porous cylinders. J. Fluid. Mech.
874, 339–358.
Joseph, D. D.
1973
Domain perturbations: the higher order theory of infinitesimal water waves. Arch. Rat. Mech. Anal.
51, 295–303.
Kamrin, K. & Stone, H. A.
2011
The symmetry of mobility laws for viscous flow along arbitrarily patterned surfaces. Phys. Fluids
23 (3), 031701.
Kaplun, S.
1957
Low Reynolds number flow past a circular cylinder. J. Math. Mech.
595–603.
Kaplun, S. & Lagerstrom, P. A.
1957
Asymptotic expansions of Navier–Stokes solutions for small Reynolds numbers. J. Math. Mech.
6 (5), 585–593.
Karrila, S. J. & Kim, S.
1989
Integral equations of the second kind for Stokes flow: direct solution for physical variables and removal of inherent accuracy limitations. Chem. Engng Commun.
82 (1), 123–161.
Khair, A. S. & Chisholm, N. G.
2014
Expansions at small Reynolds numbers for the locomotion of a spherical squirmer. Phys. Fluids
26 (1), 011902.
Khair, A. S. & Squires, T. M.
2010
Active microrheology: a proposed technique to measure normal stress coefficients of complex fluids. Phys. Rev. Lett.
105 (15), 156001.
Kim, S.
1986
The motion of ellipsoids in a second order fluid. J. Non-Newtonian Fluid Mech.
21 (2), 255–269.
Kim, S.
2015
Ellipsoidal microhydrodynamics without elliptic integrals and how to get there using linear operator theory. Ind. Engng Chem. Res.
54 (42), 10497–10501.
Kim, S. & Karrila, S. J.
2005
Microhydrodynamics: Principles and Selected Applications. Courier Corporation.
Koch, D. L. & Subramanian, G.
2006
The stress in a dilute suspension of spheres suspended in a second-order fluid subject to a linear velocity field. J. Non-Newtonian Fluid Mech.
138 (2-3), 87–97.
Kumar, A. & Graham, M. D.
2012
Accelerated boundary integral method for multiphase flow in non-periodic geometries. J. Comput. Phys.
231 (20), 6682–6713.
Ladyzhenskaya, O. A.
1969
The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach.
Lagerstrom, P. A. & Cole, J. D.
1955
Examples illustrating expansion procedures for the Navier–Stokes equations. J. Ration. Mech. Anal.
4, 817–882.
Lamb, H.
1887
On reciprocal theorems in dynamics. Proc. Lond. Math. Soc.
1 (1), 144–151.
Lamb, H.
1932
Hydrodynamics. Cambridge University Press.
Lammert, P. E., Crespi, V. H. & Nourhani, A.
2016
Bypassing slip velocity: rotational and translational velocities of autophoretic colloids in terms of surface flux. J. Fluid Mech.
802, 294–304.
Landau, L. D. & Lifshitz, E. M.
1987
Fluid Mechanics. Pergamon Press.
Lauga, E. & Davis, A. M. J.
2012
Viscous Marangoni propulsion. J. Fluid Mech.
705, 120–133.
Lauga, E. & Michelin, S.
2016
Stresslets induced by active swimmers. Phys. Rev. Lett.
117 (14), 148001.
Leal, L. G.
1975
The slow motion of slender rod-like particles in a second-order fluid. J. Fluid Mech.
69 (2), 305–337.
Leal, L. G.
1980
Particle motions in a viscous fluid. Annu. Rev. Fluid Mech.
12, 435–476.
Leal, L. G.
2007
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.
Lee, S. H., Chadwick, R. S. & Leal, L. G.
1979
Motion of a sphere in the presence of a plane interface. Part 1. An approximate solution by generalization of the method of Lorentz. J. Fluid Mech.
93 (4), 705–726.
Legendre, D. & Magnaudet, J.
1997
A note on the lift force on a spherical bubble or drop in a low-Reynolds-number shear flow. Phys. Fluids
9, 3572–3574.
Leshansky, A. M. & Brady, J. F.
2004
Force on a sphere via the generalized reciprocal theorem. Phys. Fluids
16 (3), 843–844.
Lorentz, H. A.
1895
Attempt of a Theory of Electrical and Optical Phenomena in Moving Bodies (in Dutch). E. J. Brill.
Lorentz, H. A.
1896
A general theorem concerning the motion of a viscous fluid and a few consequences derived from it (in Dutch). Versl. Konigl. Akad. Wetensch. Amst.
5, 168–175.
Lovalenti, P. M. & Brady, J. F.
1993
The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech.
256, 561–605.
Love, A. E. H.
2013
A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press.
Magnaudet, J.
2003
Small inertial effects on a spherical bubble, drop or particle moving near a wall in a time-dependent linear flow. J. Fluid Mech.
485, 115–142.
Magnaudet, J.
2011a
A ‘reciprocal’ theorem for the prediction of loads on a body moving in an inhomogeneous flow at arbitrary Reynolds number. J. Fluid Mech.
689, 564–604.
Magnaudet, J.
2011b
A ‘reciprocal’ theorem for the prediction of loads on a body moving in an inhomogeneous flow at arbitrary Reynolds number – CORRIGENDUM. J. Fluid Mech.
689, 605–606.
Magnaudet, J., Takagi, S. & Legendre, D.
2003
Drag, deformation and lateral migration of a buoyant drop moving near a wall. J. Fluid Mech.
476, 115–157.
Manga, M. & Stone, H. A.
1993
Buoyancy-driven interactions between two deformable viscous drops. J. Fluid Mech.
256, 647–683.
Masoud, H. & Stone, H. A.
2014
A reciprocal theorem for Marangoni propulsion. J. Fluid Mech.
741, R4.
Maxwell, J. C.
1864
On the calculation of the equilibrium and stiffness of frames. Phil. Mag.
27 (182), 294–299.
Maxwell, J. C.
1881
A Treatise on Electricity and Magnetism. Oxford University Press.
Michaelides, E. E. & Feng, Z.
1994
Heat transfer from a rigid sphere in a nonuniform flow and temperature field. Intl J. Heat Mass Transfer
37 (14), 2069–2076.
Michelin, S. & Lauga, E.
2015
A reciprocal theorem for boundary-driven channel flows. Phys. Fluids
27 (11), 111701.
Morrison, F. A. & Griffiths, S. K.
1981
On the transient convective transport from a body of arbitrary shape. J. Heat Transfer
103 (1), 92–95.
Mozaffari, A., Sharifi-Mood, N., Koplik, J. & Maldarelli, C.
2016
Self-diffusiophoretic colloidal propulsion near a solid boundary. Phys. Fluids
28 (5), 053107.
Munk, M. M.
1950
The reversal theorem of linearized supersonic airfoil theory. J. Appl. Phys.
21 (2), 159–161.
Nadim, A., Haj-Hariri, H. & Borhan, A.
1990
Thermocapillary migration of slightly deformed droplets. Particul. Sci. Technol.
8 (3-4), 191–198.
Navier, C. L. M. H.
1826
Résumé des Leçons données à l’École des Ponts et Chaussées sur l’Application de la Mécanique à l’Établissement des Constructions et des Machines, vol. 1. Didot.
Nazockdast, E., Rahimian, A., Zorin, D. & Shelley, M.
2017
A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics. J. Comput. Phys.
329, 173–209.
Nourhani, A., Lammert, P. E., Crespi, V. H. & Borhan, A.
2015
A general flux-based analysis for spherical electrocatalytic nanomotors. Phys. Fluids
27 (1), 012001.
Nunan, K. C. & Keller, J. B.
1984
Effective viscosity of a periodic suspension. J. Fluid Mech.
142, 269–287.
Onsager, L.
1931a
Reciprocal relations in irreversible processes. I. Phys. Rev.
37 (4), 405.
Onsager, L.
1931b
Reciprocal relations in irreversible processes. II. Phys. Rev.
38 (12), 2265.
Oppenheimer, N., Navardi, S. & Stone, H. A.
2016
Motion of a hot particle in viscous fluids. Phys. Rev. Fluids
1 (1), 014001.
Oseen, C. W.
1910
Stokes formula and a related theorem in hydrodynamics. Ark. Mat. Astron. Fys.
6, 20.
Pak, O. S., Feng, J. & Stone, H. A.
2014
Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers. J. Fluid Mech.
753, 535–552.
Pak, O. S., Zhu, L., Brandt, L. & Lauga, E.
2012
Micropropulsion and microrheology in complex fluids via symmetry breaking. Phys. Fluids
24 (10), 103102.
Papavassiliou, D. & Alexander, G. P.
2015
The many-body reciprocal theorem and swimmer hydrodynamics. Europhys. Lett.
110 (4), 44001.
Potton, R. J.
2004
Reciprocity in optics. Rep. Prog. Phys.
67 (5), 717.
Pozrikidis, C.
1992
Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Pozrikidis, C.
2016
Reciprocal identities and integral formulations for diffusive scalar transport and Stokes flow with position-dependent diffusivity or viscosity. J. Engng Maths
96 (1), 95–114.
Proudman, I. & Pearson, J. R. A.
1957
Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech.
2 (3), 237–262.
Rallabandi, B., Yang, F. & Stone, H. A.2019 Motion of hydrodynamically interacting active particles. arXiv:1901.04311.
Rallabandi, B., Hilgenfeldt, S. & Stone, H. A.
2017a
Hydrodynamic force on a sphere normal to an obstacle due to a non-uniform flow. J. Fluid Mech.
818, 407–434.
Rallabandi, B., Saintyves, B., Jules, T., Salez, T., Schönecker, C., Mahadevan, L. & Stone, H. A.
2017b
Rotation of an immersed cylinder sliding near a thin elastic coating. Phys. Rev. Fluids
2 (7), 074102.
Rallison, J. M.
1978
Note on the Faxén relations for a particle in Stokes flow. J. Fluid Mech.
88 (3), 529–533.
Rallison, J. M.
2012
The stress in a dilute suspension of liquid spheres in a second-order fluid. J. Fluid Mech.
693, 500–507.
Rallison, J. M. & Acrivos, A.
1978
A numerical study of the deformation and burst of a viscous drop in an extensional flow. J. Fluid Mech.
89 (1), 191–200.
Ramachandran, A. & Khair, A. S.
2009
The dynamics and rheology of a dilute suspension of hydrodynamically Janus spheres in a linear flow. J. Fluid Mech.
633, 233–269.
Ranger, K. B.
1978
The circular disk straddling the interface of a two-phase flow. Intl J. Multiphase Flow
4, 263–277.
Rayleigh, Lord
1873
Investigation of the character of an incompressible fluid of variable density. Proc. Lond. Math. Soc.
4, 363.
Rayleigh, Lord
1876
On the application of the principle of reciprocity to acoustics. Proc. R. Soc. Lond.
25, 118–122.
Rayleigh, Lord
1877
The Theory of Sound, vol. 1. Macmillan.
Relyea, L. M. & Khair, A. S.
2017
Forced convection heat and mass transfer from a slender particle. Chem. Engng Sci.
174, 285–289.
Reyes, D. R.
2015
The art in science of MicroTAS: the 2014 issue. Lab on a Chip
15 (9), 1981–1983.
Roper, M. & Brenner, M. P.
2009
A nonperturbative approximation for the moderate Reynolds number Navier–Stokes equations. Proc. Natl Acad. Sci. USA
106 (9), 2977–2982.
Saffman, P. G.
1965
The lift on a small sphere in a slow shear flow. J. Fluid Mech.
22, 385–400.
Segre, G. & Silberberg, A.
1961
Radial particle displacements in Poiseuille flow of suspensions. Nature
189 (4760), 209.
Segre, G. & Silberberg, A.
1963
Non-Newtonian behavior of dilute suspensions of macroscopic spheres in a capillary viscometer. J. Colloid Sci.
18 (4), 312–317.
Segre, G. & Silberberg, A. J.
1962a
Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J. Fluid Mech.
14 (1), 115–135.
Segre, G. & Silberberg, A. J.
1962b
Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J. Fluid Mech.
14 (1), 136–157.
Sen, A., Ibele, M., Hong, Y. & Velegol, D.
2009
Chemo- and phototactic nano/microbots. Faraday Discuss.
143, 15–27.
Sherwood, J. D.
1980
The primary electroviscous effect in a suspension of spheres. J. Fluid Mech.
101 (3), 609–629.
Sherwood, J. D.
1982
Electrophoresis of rods. J. Chem. Soc. Faraday Trans. 2
78 (7), 1091–1100.
Sherwood, J. D. & Stone, H. A.
1995
Electrophoresis of a thin charged disk. Phys. Fluids
7 (4), 697–705.
Shoele, K. & Eastham, P. S.
2018
Effects of nonuniform viscosity on ciliary locomotion. Phys. Rev. Fluids
3 (4), 043101.
Sierou, A. & Brady, J. F.
2001
Accelerated Stokesian dynamics simulations. J. Fluid Mech.
448, 115–146.
Solomentsev, Y. & Anderson, J. L.
1994
Electrophoresis of slender particles. J. Fluid Mech.
279, 197–215.
Squires, T. M.
2008
Electrokinetic flows over inhomogeneously slipping surfaces. Phys. Fluids
20 (9), 092105.
Stokes, G. G.
1849
On the Perfect Blackness of the Central Spot in Newton’s Rings, and on the Verification of Fresnel’s Formula for the intensities of Reflected and Reflacted Rays. In Cambridge Library Collection – Mathematics, vol. 2, pp. 89–103. Cambridge University Press.
Stone, H. A. & Duprat, C.
2016
Low-Reynolds-number flows. In Fluid-structure Interactions in Low-Reynolds-Number Flows (ed. Duprat, C. & Stone, H. A.), chap. 2, pp. 25–77. Royal Society of Chemistry.
Stone, H. A.
1989
Heat/mass transfer from surface films to shear flows at arbitrary Peclet numbers. Phys. Fluids
1 (7), 1112–1122.
Stone, H. A., Brady, J. F. & Lovalenti, P. M.2016 Inertial effects on the rheology of suspensions and on the motion of individual particles. Available from the authors.
Stone, H. A. & Masoud, H.
2015
Mobility of membrane-trapped particles. J. Fluid Mech.
781, 494–505.
Stone, H. A. & Samuel, A. D. T.
1996
Propulsion of microorganisms by surface distortions. Phys. Rev. Lett.
77, 4102–4104.
Subramanian, G., Koch, D. L., Zhang, J. & Wang, C.
2011
The influence of the inertially dominated outerregion on the rheology of a dilute dispersion of low-Reynolds-number drops or rigid particles. J. Fluid Mech.
674, 307–358.
Subramanian, R. S.
1985
The Stokes force on a droplet in an unbounded fluid medium due to capillary effects. J. Fluid Mech.
153, 389–400.
Tanzosh, J. P. & Stone, H. A.
1994
Motion of a rigid particle in a rotating viscous flow: an integral equation approach. J. Fluid Mech.
275, 225–256.
Tanzosh, J. P. & Stone, H. A.
1996
A general approach for analyzing the arbitrary motion of a circular disk in a Stokes flow. Chem. Engng Commun.
148 (1), 333–346.
Taylor, G. I.
1960
Low Reynolds Number Flow (16 mm film). Educational Services Inc.
Teubner, M.
1982
The motion of charged colloidal particles in electric fields. J. Chem. Phys.
76 (11), 5564–5573.
Thiébaud, M. & Misbah, C.
2013
Rheology of a vesicle suspension with finite concentration: a numerical study. Phys. Rev. E
88, 062707.
Ursell, F. & Ward, G. N.
1950
On some general theorems in the linearized theory of compressible flow. Q. J. Mech. Appl. Maths
3 (3), 326–348.
Van Dyke, M. D.
1964
Perturbation Methods in Fluid Dynamics. Academic Press.
Vandadi, V., Jafari Kang, S. & Masoud, H.
2016
Reciprocal theorem for convective heat and mass transfer from a particle in Stokes and potential flows. Phys. Rev. Fluids
1 (2), 022001.
Vandadi, V., Jafari Kang, S. & Masoud, H.
2017
Reverse Marangoni surfing. J. Fluid Mech.
811, 612–621.
Villat, H.
1943
Leçons sur les Fluides Visqueux. Gauthier-Villars.
Wang, S. & Ardekani, A.
2012
Inertial squirmer. Phys. Fluids
24 (10), 101902.
Whitehead, A. N.
1889
Second approximations to viscous fluid motion. Q. J. Maths
23, 143–152.
Würger, A.
2014
Thermally driven Marangoni surfers. J. Fluid Mech.
752, 589–601.
Yano, H., Kieda, A. & Mizuno, I.
1991
The fundamental solution of Brinkman’s equation in two dimensions. Fluid Dyn. Res.
7 (3-4), 109–118.
Yariv, E. & Brenner, H.
2003
Near-contact electrophoretic motion of a sphere parallel to a planar wall. J. Fluid Mech.
484, 85–111.
Yariv, E. & Brenner, H.
2004
The electrophoretic mobility of a closely fitting sphere in a cylindrical pore. SIAM J. Appl. Maths
64 (2), 423–441.
Youngren, G. K. & Acrivos, A.
1975
Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech.
69 (2), 377–403.
Zhang, W. & Stone, H. A.
1998
Oscillatory motions of circular disks and nearly spherical particles in viscous flows. J. Fluid Mech.
367, 329–358.
Zhao, H., Isfahani, A. H. G., Olson, L. N. & Freund, J. B.
2010
A spectral boundary integral method for flowing blood cells. J. Comp. Phys.
229 (10), 3726–3744.
Zhao, H. & Shaqfeh, E. S. G.
2011
The dynamics of a vesicle in simple shear flow. J. Fluid Mech.
674, 578–604.
Zinchenko, A. Z. & Davis, R. H.
2008
Algorithm for direct numerical simulation of emulsion flow through a granular material. J. Comput. Phys.
227 (16), 7841–7888.