Skip to main content
×
×
Home

The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules

  • Jonathan R. Clausen (a1), Daniel A. Reasor (a1) and Cyrus K. Aidun (a1)
Abstract

A detailed study into the rheology and microstructure of dense suspensions of initially spherical capsules is presented, where capsules are composed of a fluid-filled interior surrounded by an elastic membrane. This study couples a lattice-Boltzmann fluid solver to a finite-element membrane model creating a robust and scalable method for the simulation of these suspensions. A Lees–Edwards boundary condition is used to simulate periodic simple shear to obtain bulk rheological properties, and three-dimensional results are presented for capsules in the regime of negligible inertia, Brownian motion and colloidal interparticle forces. The simulation results focus on describing the suspension rheology as a function of the particle concentration and deformability, and relating these macroscopic rheological findings to changes at the particle level, i.e. the suspension microstructure. Several important findings are made: suspensions of deformable capsules are found to be shear thinning, and the initially compressive normal stresses associated with rigid spherical suspensions undergo rapid changes with moderate levels of particle deformation. These normal stress changes are particularly evident in the first normal stress difference, which undergoes a sign change at fairly minor levels of deformation, and the particle pressure, which decreases rapidly with increasing particle deformability. Changes in the microstructure as quantified by the single-body microstructure and the pair distribution function are reported. Also, results calculating particle self-diffusion are presented and related to changes in the normal stresses.

Copyright
Corresponding author
Email address for correspondence: cyrus.aidun@me.gatech.edu
Footnotes
Hide All

Present address: Sandia National Laboratories, Albuquerque, NM 87185, USA.

Footnotes
References
Hide All
1. Acrivos, A., Mauri, R. & Fan, X. 1993 Shear-induced resuspension in a Couette device. Intl J. Multiphase Flow 19 (5), 797802.
2. Aidun, C. K. & Clausen, J. R. 2010 The lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42 (1), 439472.
3. Aidun, C. K. & Lu, Y. 1995 Lattice Boltzmann simulation of solid particles suspended in fluid. J. Stat. Phys. 81 (1), 4961.
4. Aidun, C. K., Lu, Y. & Ding, E. J. 1998 Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.
5. Bagchi, P. 2007 Mesoscale simulation of blood flow in small vessels. Biophys. J. 92 (6), 18581877.
6. Bagchi, P. & Kalluri, R. M. 2010 Rheology of a dilute suspension of liquid-filled elastic capsules. Phys. Rev. E 81, 056320.
7. Barthès-Biesel, D. 1980 Motion of a spherical microcapsule freely suspended in a linear shear flow. J. Fluid Mech. 100 (04), 831853.
8. Barthès-Biesel, D. 2009 Capsule motion in flow: deformation and membrane buckling. C. R. Physique 10 (8), 764774.
9. Barthès-Biesel, D. & Rallison, J. M. 1981 The time-dependent deformation of a capsule freely suspended in a linear shear flow. J. Fluid Mech. 113, 251267.
10. Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545570.
11. Batchelor, G. K. & Green, J. T. 1972 The determination of the bulk stress in a suspension of spherical particles to order c 2 . J. Fluid Mech. 56 (03), 401427.
12. Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94 (3), 511525.
13. Biben, T. & Misbah, C. 2003 Tumbling of vesicles under shear flow within an advected-field approach. Phys. Rev. E 67 (3), 031908.
14. Brady, J. F. 1993 Brownian motion, hydrodynamics, and the osmotic pressure. J. Chem. Phys. 98 (4), 33353341.
15. Brady, J. F. & Bossis, G. 1988 Stokesian Dynamics. Annu. Rev. Fluid Mech. 20 (1), 111157.
16. Brady, J. F. & Morris, J. F. 1997 Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348, 103139.
17. Breedveld, V., van den Ende, D., Bosscher, M., Jongschaap, R. J. J. & Mellema, J. 2001b Measuring shear-induced self-diffusion in a counterrotating geometry. Phys. Rev. E 63 (2), 21403.
18. Breedveld, V., van den Ende, D., Bosscher, M., Jongschaap, R. J. J. & Mellema, J. 2002 Measurement of the full shear-induced self-diffusion tensor of noncolloidal suspensions. J. Chem. Phys. 116 (23), 1052910535.
19. Breedveld, V., van den Ende, D., Jongschaap, R. J. J. & Mellema, J. 2001b Shear-induced diffusion and rheology of noncolloidal suspensions: time scales and particle displacements. J. Chem. Phys. 114 (13), 5923.
20. Chen, L. B., Ackerson, B. J. & Zukoski, C. F. 1994 Rheological consequences of microstructural transitions in colloidal crystals. J. Rheol. 38, 193216.
21. Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1), 329364.
22. Clausen, J. R. 2010 The effect of particle deformation on the rheology and microstructure of noncolloidal suspensions. PhD thesis, Georgia Institute of Technology.
23. Clausen, J. R. & Aidun, C. K. 2009 Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions. Intl J. Multiphase Flow 35, 307311.
24. Clausen, J. R. & Aidun, C. K. 2010 Capsule dynamics and rheology in shear flow: particle pressure and normal stress. Phys. Fluids 22, 123302.
25. Clausen, J. R., Reasor, D. A. & Aidun, C. K. 2010 Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM Blue Gene/P architecture. Comput. Phys. Commun. 181 (6), 10131020.
26. Coupier, G., Kaoui, B., Podgorski, T. & Misbah, C. 2008 Noninertial lateral migration of vesicles in bounded Poiseuille flow. Phys. Fluids 20, 111702.
27. Danker, G. & Misbah, C. 2007 Rheology of a dilute suspension of vesicles. Phys. Rev. Lett. 98 (8), 088104.
28. Deboeuf, A., Gauthier, G., Martin, J., Yurkovetsky, Y. & Morris, J. F. 2009 Particle pressure in a sheared suspension: a bridge from osmosis to granular dilatancy. Phys. Rev. Lett. 102 (10), 108301.
29. Ding, E. J. & Aidun, C. K. 2003 Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact. J. Stat. Phys. 112 (3), 685708.
30. Dupin, M. M., Halliday, I., Care, C. M., Alboul, L. & Munn, L. L. 2007 Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75 (6), 66707.
31. Eckstein, E. C., Bailey, D. G. & Shapiro, A. H. 2006 Self-diffusion of particles in shear flow of a suspension. J. Fluid Mech. 79 (01), 191208.
32. Eilers, H. 1941 Die viskosität von emulsionen hochviskoser stoffe als funktion der konzentration. Colloid Polym. Sci. 97 (3), 313321.
33. Einstein, A. 1906 Zur Theorie der Brownschen Bewegung. Ann. Phys. (Leipzig) 19, 371381.
34. Einstein, A. 1911 Berichtigung zu meiner Arbeit: eine neue Bestimmung der Moleküldimensionen. Ann. Phys. (Leipzig) 34 (3), 591592.
35. Foss, D. R. & Brady, J. F. 1999 Self-diffusion in sheared suspensions by dynamic simulation. J. Fluid Mech. 401, 243274.
36. Frisch, U., d’Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y. & Rivet, J.-P. 1987 Lattice gas hydrodynamics in two and three dimensions. Complex Syst. 1 (4), 649707.
37. Gadala-Maria, F. 1979 The rheology of concentrated suspensions. PhD thesis, Standford University.
38. Ghigliotti, G., Biben, T. & Misbah, C. 2010 Rheology of a dilute two-dimensional suspension of vesicles. J. Fluid Mech. 653, 489518.
39. Ginzbourg, I. & Adler, P. M. 1994 Boundary flow condition analysis for the 3-dimensional lattice Boltzmann model. J. Phys. II 4 (2), 191214.
40. Goddard, J. D. & Miller, C. 1967 Nonlinear effects in the rheology of dilute suspensions. J. Fluid Mech. 28 (04), 657673.
41. Higuera, F. J. & Jimenez, J. 1989 Boltzmann approach to lattice gas simulations. Europhys. Lett. 9 (7), 663668.
42. Hinch, E. J. & Leal, L. G. 1972 The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech. 52 (04), 683712.
43. Hinch, E. J. & Leal, L. G. 1973 Time-dependent shear flows of a suspension of particles with weak Brownian rotations. J. Fluid Mech. 57 (04), 753767.
44. d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P. & Luo, L.-S. 2002 Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360 (1792), 437451.
45. Jeffrey, D. J., Morris, J. F. & Brady, J. F. 1993 The pressure moments for two rigid spheres in low-Reynolds-number flow. Phys. Fluids A 5 (10), 23172325.
46. Junk, M. & Yong, W. A. 2003 Rigorous Navier–Stokes limit of the lattice Boltzmann equation. Asymptotic Anal. 35 (2), 165185.
47. Kaoui, B., Ristow, G. H., Cantat, I., Misbah, C. & Zimmermann, W. 2008 Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys. Rev. E 77 (2), 21903.
48. Karnis, A. & Mason, S. G. 1967 Particle motions in sheared suspensions XXIII. Wall migration of fluid drops. J. Colloid Interface Sci. 24 (2), 164169.
49. Keller, S. R. & Skalak, R. 1982 Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 2747.
50. Kennedy, M. R., Pozrikidis, C. & Skalak, R. 1994 Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow. Comput. Fluids 23 (2), 251278.
51. Krieger, I. M. & Dougherty, T. J. 1959 A mechanism for non-Newtonian flow in suspensions of rigid spheres. J. Rheol. 3 (1), 137152.
52. Kulkarni, P. M. & Morris, J. F. 2008 Suspension properties at finite Reynolds number from simulated shear flow. Phys. Fluids 20 (4), 040602.
53. Lac, E., Barthès-Biesel, D., Pelekasis, N. A. & Tsamopoulos, J. 2004 Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling. J. Fluid Mech. 516, 303334.
54. Ladd, A. J. C. 1994a Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285309.
55. Ladd, A. J. C. 1994b Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311339.
56. Ladd, A. J. C. & Verberg, R. 2001 Lattice-Boltzmann simulations of particle–fluid suspensions. J. Stat. Phys. 104 (5), 11911251.
57. Leighton, D. T. & Acrivos, A. 1987 The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415439.
58. Lin, C. J., Peery, J. H. & Schowalter, W. R. 1970 Simple shear flow round a rigid sphere: inertial effects and suspension rheology. J. Fluid Mech. 44 (01), 117.
59. Loewenberg, M. & Hinch, E. J. 1996 Numerical simulation of a concentrated emulsion in shear flow. J. Fluid Mech. 321, 395419.
60. Lorenz, E., Caiazzo, A. & Hoekstra, A. G. 2009 Corrected momentum exchange method for lattice Boltzmann simulations of suspension flow. Phys. Rev. E 79 (3), 036705.
61. MacMeccan, R. M. 2007 Mechanistic effects of erythrocytes on platelet deposition in coronary thrombosis. PhD thesis, Georgia Institute of Technology.
62. MacMeccan, R. M., Clausen, J. R., Neitzel, G. P. & Aidun, C. K. 2009 Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J. Fluid Mech. 618, 1339.
63. Marchioro, M. & Acrivos, A. 2001 Shear-induced particle diffusivities from numerical simulations. J. Fluid Mech. 443, 101128.
64. McNamara, G. R. & Zanetti, G. 1988 Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61 (20), 23322335.
65. Mewis, J., Frith, W. J., Strivens, T. A. & Russel, W. B. 1989 The rheology of suspensions containing polymerically stabilized particles. AIChE J. 35 (3), 415422.
66. Misbah, C. 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96 (2), 028104.
67. Morris, J. F. & Boulay, F. 1999 Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol. 43 (5), 12131237.
68. Morris, J. F. & Brady, J. F. 1998 Pressure-driven flow of a suspension: Buoyancy effects. Intl J. Multiphase Flow 24 (1), 105130.
69. Morris, J. F. & Katyal, B. 2002 Microstructure from simulated Brownian suspension flows at large shear rate. Phys. Fluids 14 (6), 19201937.
70. Noble, D. R., Chen, S., Georgiadis, J. G. & Buckius, R. O. 1995 A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Phys. Fluids 7 (1), 203209.
71. Nott, P. R. & Brady, J. F. 1994 Pressure-driven suspension flow: simulation and theory. J. Fluid Mech. 275, 157199.
72. Nourgaliev, R. R., Dinh, T. N., Theofanous, T. G. & Joseph, D. 2003 The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. Intl J. Multiphase Flow 29 (1), 117169.
73. Papir, Y. S. & Krieger, I. M. 1970 Rheological studies on dispersions of uniform colloidal spheres II. Dispersions in nonaqueous media. J. Colloid. Interface Sci. 34 (1), 126130.
74. Parsi, F. & Gadala-Maria, F. 1987 Fore-and-aft asymmetry in a concentrated suspension of solid spheres. J. Rheol. 31 (8), 725732.
75. Phung, T. N., Brady, J. F. & Bossis, G. 1996 Stokesian dynamics simulation of Brownian suspensions. J. Fluid Mech. 313, 181207.
76. Ramanujan, S. & Pozrikidis, C. 1998 Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J. Fluid Mech. 361, 117143.
77. Reasor, D. A., Clausen, J. R. & Aidun, C. K. 2011 Coupling the lattice-Boltzmann and spectrin-link methods for the direct numerical simulation of cellular blood flow. Intl J. Numer. Meth. Fluids, doi:10.1002/fld.2534.
78. Roscoe, R. 1967 On the rheology of a suspension of viscoelastic spheres in a viscous liquid. J. Fluid Mech. 28 (02), 273293.
79. Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Dispersions. Cambridge University Press.
80. Sierou, A. & Brady, J. F. 2001 Accelerated Stokesian dynamics simulations. J. Fluid Mech. 448, 115146.
81. Sierou, A. & Brady, J. F. 2002 Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol. 46, 10311056.
82. Sierou, A. & Brady, J. F. 2004 Shear-induced self-diffusion in non-colloidal suspensions. J. Fluid Mech. 506, 285314.
83. Singh, A. & Nott, P. R. 2003 Experimental measurements of the normal stresses in sheared Stokesian suspensions. J. Fluid Mech. 490, 293320.
84. Stickel, J. J. & Powell, R. L. 2005 Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37 (01), 129149.
85. Sukumaran, S. & Seifert, U. 2001 Influence of shear flow on vesicles near a wall: a numerical study. Phys. Rev. E 64 (1), 11916.
86. Taylor, G. I. 1932 The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. A 138 (834), 4148.
87. Vahala, G., Keating, B., Soe, M., Yepez, J., Vahala, L. & Ziegeler, S. 2009 Entropic, LES and boundary conditions in lattice Boltzmann simulations of turbulence. Eur. Phys. J. Special Topics 171 (1), 167171.
88. Vlahovska, P. M. & Gracia, R. S. 2007 Dynamics of a viscous vesicle in linear flows. Phys. Rev. E 75 (1), 016313.
89. Wagner, A. J. & Pagonabarraga, I. 2002 Lees–Edwards boundary conditions for lattice Boltzmann. J. Stat. Phys. 107 (1), 521537.
90. Wu, J. & Aidun, C. K. 2009 Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Intl J. Numer. Meth. Fluids 62 (7), 765783.
91. Wu, J. & Aidun, C. K. 2010 A method for direct simulation of flexible fiber suspensions using lattice-Boltzmann equation with external boundary force. Intl J. Multiphase Flow 36, 202209.
92. Yurkovetsky, Y. & Morris, J. F. 2008 Particle pressure in sheared Brownian suspensions. J. Rheol. 52 (1), 141164.
93. Zarraga, I. E., Hill, D. A. & Leighton, D. T. 2000 The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol. 44 (2), 185220.
94. Zhang, J., Johnson, P. C. & Popel, A. S. 2007 An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys. Biol. 4, 285.
95. Zinchenko, A. Z. & Davis, R. H. 2002 Shear flow of highly concentrated emulsions of deformable drops by numerical simulations. J. Fluid Mech. 455, 2162.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed