1.
Acrivos, A., Mauri, R. & Fan, X.
1993
Shear-induced resuspension in a Couette device. Intl J. Multiphase Flow
19
(5), 797–802.
2.
Aidun, C. K. & Clausen, J. R.
2010
The lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech.
42
(1), 439–472.
3.
Aidun, C. K. & Lu, Y.
1995
Lattice Boltzmann simulation of solid particles suspended in fluid. J. Stat. Phys.
81
(1), 49–61.
4.
Aidun, C. K., Lu, Y. & Ding, E. J.
1998
Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech.
373, 287–311.
5.
Bagchi, P.
2007
Mesoscale simulation of blood flow in small vessels. Biophys. J.
92
(6), 1858–1877.
6.
Bagchi, P. & Kalluri, R. M.
2010
Rheology of a dilute suspension of liquid-filled elastic capsules. Phys. Rev. E
81, 056320.
7.
Barthès-Biesel, D.
1980
Motion of a spherical microcapsule freely suspended in a linear shear flow. J. Fluid Mech.
100
(04), 831–853.
8.
Barthès-Biesel, D.
2009
Capsule motion in flow: deformation and membrane buckling. C. R. Physique
10
(8), 764–774.
9.
Barthès-Biesel, D. & Rallison, J. M.
1981
The time-dependent deformation of a capsule freely suspended in a linear shear flow. J. Fluid Mech.
113, 251–267.
10.
Batchelor, G. K.
1970
The stress system in a suspension of force-free particles. J. Fluid Mech.
41, 545–570.
11.
Batchelor, G. K. & Green, J. T.
1972
The determination of the bulk stress in a suspension of spherical particles to order c
^{2}
. J. Fluid Mech.
56
(03), 401–427.
12.
Bhatnagar, P. L., Gross, E. P. & Krook, M.
1954
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev.
94
(3), 511–525.
13.
Biben, T. & Misbah, C.
2003
Tumbling of vesicles under shear flow within an advected-field approach. Phys. Rev. E
67
(3), 031908.
14.
Brady, J. F.
1993
Brownian motion, hydrodynamics, and the osmotic pressure. J. Chem. Phys.
98
(4), 3335–3341.
15.
Brady, J. F. & Bossis, G.
1988
Stokesian Dynamics. Annu. Rev. Fluid Mech.
20
(1), 111–157.
16.
Brady, J. F. & Morris, J. F.
1997
Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech.
348, 103–139.
17.
Breedveld, V., van den Ende, D., Bosscher, M., Jongschaap, R. J. J. & Mellema, J.
2001b
Measuring shear-induced self-diffusion in a counterrotating geometry. Phys. Rev. E
63
(2), 21403.
18.
Breedveld, V., van den Ende, D., Bosscher, M., Jongschaap, R. J. J. & Mellema, J.
2002
Measurement of the full shear-induced self-diffusion tensor of noncolloidal suspensions. J. Chem. Phys.
116
(23), 10529–10535.
19.
Breedveld, V., van den Ende, D., Jongschaap, R. J. J. & Mellema, J.
2001b
Shear-induced diffusion and rheology of noncolloidal suspensions: time scales and particle displacements. J. Chem. Phys.
114
(13), 5923.
20.
Chen, L. B., Ackerson, B. J. & Zukoski, C. F.
1994
Rheological consequences of microstructural transitions in colloidal crystals. J. Rheol.
38, 193–216.
21.
Chen, S. & Doolen, G. D.
1998
Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech.
30
(1), 329–364.
22.
Clausen, J. R.
2010 The effect of particle deformation on the rheology and microstructure of noncolloidal suspensions. PhD thesis, Georgia Institute of Technology.
23.
Clausen, J. R. & Aidun, C. K.
2009
Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions. Intl J. Multiphase Flow
35, 307–311.
24.
Clausen, J. R. & Aidun, C. K.
2010
Capsule dynamics and rheology in shear flow: particle pressure and normal stress. Phys. Fluids
22, 123302.
25.
Clausen, J. R., Reasor, D. A. & Aidun, C. K.
2010
Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM Blue Gene/P architecture. Comput. Phys. Commun.
181
(6), 1013–1020.
26.
Coupier, G., Kaoui, B., Podgorski, T. & Misbah, C.
2008
Noninertial lateral migration of vesicles in bounded Poiseuille flow. Phys. Fluids
20, 111702.
27.
Danker, G. & Misbah, C.
2007
Rheology of a dilute suspension of vesicles. Phys. Rev. Lett.
98
(8), 088104.
28.
Deboeuf, A., Gauthier, G., Martin, J., Yurkovetsky, Y. & Morris, J. F.
2009
Particle pressure in a sheared suspension: a bridge from osmosis to granular dilatancy. Phys. Rev. Lett.
102
(10), 108301.
29.
Ding, E. J. & Aidun, C. K.
2003
Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact. J. Stat. Phys.
112
(3), 685–708.
30.
Dupin, M. M., Halliday, I., Care, C. M., Alboul, L. & Munn, L. L.
2007
Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E
75
(6), 66707.
31.
Eckstein, E. C., Bailey, D. G. & Shapiro, A. H.
2006
Self-diffusion of particles in shear flow of a suspension. J. Fluid Mech.
79
(01), 191–208.
32.
Eilers, H.
1941
Die viskosität von emulsionen hochviskoser stoffe als funktion der konzentration. Colloid Polym. Sci.
97
(3), 313–321.
33.
Einstein, A.
1906
Zur Theorie der Brownschen Bewegung. Ann. Phys. (Leipzig)
19, 371–381.
34.
Einstein, A.
1911
Berichtigung zu meiner Arbeit: eine neue Bestimmung der Moleküldimensionen. Ann. Phys. (Leipzig)
34
(3), 591–592.
35.
Foss, D. R. & Brady, J. F.
1999
Self-diffusion in sheared suspensions by dynamic simulation. J. Fluid Mech.
401, 243–274.
36.
Frisch, U., d’Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y. & Rivet, J.-P.
1987
Lattice gas hydrodynamics in two and three dimensions. Complex Syst.
1
(4), 649–707.
37.
Gadala-Maria, F.
1979 The rheology of concentrated suspensions. PhD thesis, Standford University.
38.
Ghigliotti, G., Biben, T. & Misbah, C.
2010
Rheology of a dilute two-dimensional suspension of vesicles. J. Fluid Mech.
653, 489–518.
39.
Ginzbourg, I. & Adler, P. M.
1994
Boundary flow condition analysis for the 3-dimensional lattice Boltzmann model. J. Phys. II
4
(2), 191–214.
40.
Goddard, J. D. & Miller, C.
1967
Nonlinear effects in the rheology of dilute suspensions. J. Fluid Mech.
28
(04), 657–673.
41.
Higuera, F. J. & Jimenez, J.
1989
Boltzmann approach to lattice gas simulations. Europhys. Lett.
9
(7), 663–668.
42.
Hinch, E. J. & Leal, L. G.
1972
The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech.
52
(04), 683–712.
43.
Hinch, E. J. & Leal, L. G.
1973
Time-dependent shear flows of a suspension of particles with weak Brownian rotations. J. Fluid Mech.
57
(04), 753–767.
44.
d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P. & Luo, L.-S.
2002
Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A
360
(1792), 437–451.
45.
Jeffrey, D. J., Morris, J. F. & Brady, J. F.
1993
The pressure moments for two rigid spheres in low-Reynolds-number flow. Phys. Fluids A
5
(10), 2317–2325.
46.
Junk, M. & Yong, W. A.
2003
Rigorous Navier–Stokes limit of the lattice Boltzmann equation. Asymptotic Anal.
35
(2), 165–185.
47.
Kaoui, B., Ristow, G. H., Cantat, I., Misbah, C. & Zimmermann, W.
2008
Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys. Rev. E
77
(2), 21903.
48.
Karnis, A. & Mason, S. G.
1967
Particle motions in sheared suspensions XXIII. Wall migration of fluid drops. J. Colloid Interface Sci.
24
(2), 164–169.
49.
Keller, S. R. & Skalak, R.
1982
Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech.
120, 27–47.
50.
Kennedy, M. R., Pozrikidis, C. & Skalak, R.
1994
Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow. Comput. Fluids
23
(2), 251–278.
51.
Krieger, I. M. & Dougherty, T. J.
1959
A mechanism for non-Newtonian flow in suspensions of rigid spheres. J. Rheol.
3
(1), 137–152.
52.
Kulkarni, P. M. & Morris, J. F.
2008
Suspension properties at finite Reynolds number from simulated shear flow. Phys. Fluids
20
(4), 040602.
53.
Lac, E., Barthès-Biesel, D., Pelekasis, N. A. & Tsamopoulos, J.
2004
Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling. J. Fluid Mech.
516, 303–334.
54.
Ladd, A. J. C.
1994a
Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech.
271, 285–309.
55.
Ladd, A. J. C.
1994b
Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech.
271, 311–339.
56.
Ladd, A. J. C. & Verberg, R.
2001
Lattice-Boltzmann simulations of particle–fluid suspensions. J. Stat. Phys.
104
(5), 1191–1251.
57.
Leighton, D. T. & Acrivos, A.
1987
The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech.
181, 415–439.
58.
Lin, C. J., Peery, J. H. & Schowalter, W. R.
1970
Simple shear flow round a rigid sphere: inertial effects and suspension rheology. J. Fluid Mech.
44
(01), 1–17.
59.
Loewenberg, M. & Hinch, E. J.
1996
Numerical simulation of a concentrated emulsion in shear flow. J. Fluid Mech.
321, 395–419.
60.
Lorenz, E., Caiazzo, A. & Hoekstra, A. G.
2009
Corrected momentum exchange method for lattice Boltzmann simulations of suspension flow. Phys. Rev. E
79
(3), 036705.
61.
MacMeccan, R. M.
2007 Mechanistic effects of erythrocytes on platelet deposition in coronary thrombosis. PhD thesis, Georgia Institute of Technology.
62.
MacMeccan, R. M., Clausen, J. R., Neitzel, G. P. & Aidun, C. K.
2009
Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J. Fluid Mech.
618, 13–39.
63.
Marchioro, M. & Acrivos, A.
2001
Shear-induced particle diffusivities from numerical simulations. J. Fluid Mech.
443, 101–128.
64.
McNamara, G. R. & Zanetti, G.
1988
Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett.
61
(20), 2332–2335.
65.
Mewis, J., Frith, W. J., Strivens, T. A. & Russel, W. B.
1989
The rheology of suspensions containing polymerically stabilized particles. AIChE J.
35
(3), 415–422.
66.
Misbah, C.
2006
Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett.
96
(2), 028104.
67.
Morris, J. F. & Boulay, F.
1999
Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol.
43
(5), 1213–1237.
68.
Morris, J. F. & Brady, J. F.
1998
Pressure-driven flow of a suspension: Buoyancy effects. Intl J. Multiphase Flow
24
(1), 105–130.
69.
Morris, J. F. & Katyal, B.
2002
Microstructure from simulated Brownian suspension flows at large shear rate. Phys. Fluids
14
(6), 1920–1937.
70.
Noble, D. R., Chen, S., Georgiadis, J. G. & Buckius, R. O.
1995
A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Phys. Fluids
7
(1), 203–209.
71.
Nott, P. R. & Brady, J. F.
1994
Pressure-driven suspension flow: simulation and theory. J. Fluid Mech.
275, 157–199.
72.
Nourgaliev, R. R., Dinh, T. N., Theofanous, T. G. & Joseph, D.
2003
The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. Intl J. Multiphase Flow
29
(1), 117–169.
73.
Papir, Y. S. & Krieger, I. M.
1970
Rheological studies on dispersions of uniform colloidal spheres II. Dispersions in nonaqueous media. J. Colloid. Interface Sci.
34
(1), 126–130.
74.
Parsi, F. & Gadala-Maria, F.
1987
Fore-and-aft asymmetry in a concentrated suspension of solid spheres. J. Rheol.
31
(8), 725–732.
75.
Phung, T. N., Brady, J. F. & Bossis, G.
1996
Stokesian dynamics simulation of Brownian suspensions. J. Fluid Mech.
313, 181–207.
76.
Ramanujan, S. & Pozrikidis, C.
1998
Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J. Fluid Mech.
361, 117–143.
77.
Reasor, D. A., Clausen, J. R. & Aidun, C. K.
2011 Coupling the lattice-Boltzmann and spectrin-link methods for the direct numerical simulation of cellular blood flow. Intl J. Numer. Meth. Fluids, doi:10.1002/fld.2534.
78.
Roscoe, R.
1967
On the rheology of a suspension of viscoelastic spheres in a viscous liquid. J. Fluid Mech.
28
(02), 273–293.
79.
Russel, W. B., Saville, D. A. & Schowalter, W. R.
1989
Colloidal Dispersions. Cambridge University Press.
80.
Sierou, A. & Brady, J. F.
2001
Accelerated Stokesian dynamics simulations. J. Fluid Mech.
448, 115–146.
81.
Sierou, A. & Brady, J. F.
2002
Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol.
46, 1031–1056.
82.
Sierou, A. & Brady, J. F.
2004
Shear-induced self-diffusion in non-colloidal suspensions. J. Fluid Mech.
506, 285–314.
83.
Singh, A. & Nott, P. R.
2003
Experimental measurements of the normal stresses in sheared Stokesian suspensions. J. Fluid Mech.
490, 293–320.
84.
Stickel, J. J. & Powell, R. L.
2005
Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech.
37
(01), 129–149.
85.
Sukumaran, S. & Seifert, U.
2001
Influence of shear flow on vesicles near a wall: a numerical study. Phys. Rev. E
64
(1), 11916.
86.
Taylor, G. I.
1932
The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. A
138
(834), 41–48.
87.
Vahala, G., Keating, B., Soe, M., Yepez, J., Vahala, L. & Ziegeler, S.
2009
Entropic, LES and boundary conditions in lattice Boltzmann simulations of turbulence. Eur. Phys. J. Special Topics
171
(1), 167–171.
88.
Vlahovska, P. M. & Gracia, R. S.
2007
Dynamics of a viscous vesicle in linear flows. Phys. Rev. E
75
(1), 016313.
89.
Wagner, A. J. & Pagonabarraga, I.
2002
Lees–Edwards boundary conditions for lattice Boltzmann. J. Stat. Phys.
107
(1), 521–537.
90.
Wu, J. & Aidun, C. K.
2009
Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Intl J. Numer. Meth. Fluids
62
(7), 765–783.
91.
Wu, J. & Aidun, C. K.
2010
A method for direct simulation of flexible fiber suspensions using lattice-Boltzmann equation with external boundary force. Intl J. Multiphase Flow
36, 202–209.
92.
Yurkovetsky, Y. & Morris, J. F.
2008
Particle pressure in sheared Brownian suspensions. J. Rheol.
52
(1), 141–164.
93.
Zarraga, I. E., Hill, D. A. & Leighton, D. T.
2000
The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol.
44
(2), 185–220.
94.
Zhang, J., Johnson, P. C. & Popel, A. S.
2007
An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys. Biol.
4, 285.
95.
Zinchenko, A. Z. & Davis, R. H.
2002
Shear flow of highly concentrated emulsions of deformable drops by numerical simulations. J. Fluid Mech.
455, 21–62.