Skip to main content
×
Home

The role of Stewartson and Ekman layers in turbulent rotating Rayleigh–Bénard convection

  • Rudie P. J. Kunnen (a1), Richard J. A. M. Stevens (a2), Jim Overkamp (a1), Chao Sun (a2), GertJan F. van Heijst (a1) and Herman J. H. Clercx (a1) (a3)...
Abstract
Abstract

When the classical Rayleigh–Bénard (RB) system is rotated about its vertical axis roughly three regimes can be identified. In regime I (weak rotation) the large-scale circulation (LSC) is the dominant feature of the flow. In regime II (moderate rotation) the LSC is replaced by vertically aligned vortices. Regime III (strong rotation) is characterized by suppression of the vertical velocity fluctuations. Using results from experiments and direct numerical simulations of RB convection for a cell with a diameter-to-height aspect ratio equal to one at () and we identified the characteristics of the azimuthal temperature profiles at the sidewall in the different regimes. In regime I the azimuthal wall temperature profile shows a cosine shape and a vertical temperature gradient due to plumes that travel with the LSC close to the sidewall. In regimes II and III this cosine profile disappears, but the vertical wall temperature gradient is still observed. It turns out that the vertical wall temperature gradient in regimes II and III has a different origin than that observed in regime I. It is caused by boundary layer dynamics characteristic for rotating flows, which drives a secondary flow that transports hot fluid up the sidewall in the lower part of the container and cold fluid downwards along the sidewall in the top part.

Copyright
Corresponding author
Email address for correspondence: r.p.j.kunnen@tue.nl
References
Hide All
1. Ahlers G., Grossmann S. & Lohse D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503.
2. van Bokhoven L. J. A. 2007 Experiments on rapidly rotating turbulent flows. PhD thesis, Eindhoven University of Technology.
3. Boubnov B. M. & Golitsyn G. S. 1986 Experimental study of convective structures in rotating fluids. J. Fluid Mech. 167, 503531.
4. Boubnov B. M. & Golitsyn G. S. 1990 Temperature and velocity field regimes of convective motions in a rotating plane fluid layer. J. Fluid Mech. 219, 215239.
5. Brown E. & Ahlers G. 2006a Effect of the Earth’s Coriolis force on turbulent Rayleigh–Bénard convection in the laboratory. Phys. Fluids 18, 125108–115.
6. Brown E. & Ahlers G. 2006b Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351386.
7. Brown E. & Ahlers G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 134501.
8. Brown E., Funfschilling D., Nikolaenko A. & Ahlers G. 2005a Heat transport by turbulent Rayleigh–Bénard convection: effect of finite top and bottom conductivity. Phys. Fluids 17, 075108.
9. Brown E., Nikolaenko A. & Ahlers G. 2005b Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.
10. Ecke R. E. & Liu Y. 1998 Traveling-wave and vortex states in rotating Rayleigh–Bénard convection. Intl J. Engng Sci. 36, 14711480.
11. Fernando H. J. S., Chen R. & Boyer D. L. 1991 Effects of rotation on convective turbulence. J. Fluid Mech. 228, 513547.
12. Funfschilling D., Brown E., Nikolaenko A. & Ahlers G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical cells with aspect ratio one and larger. J. Fluid Mech. 536, 145154.
13. Greenspan H. P & Howard L. N. 1963 On a time-dependent motion of a rotating fluid. J. Fluid Mech. 17, 385404.
14. Hart J. E., Kittelman S. & Ohlsen D. R. 2002 Mean flow precession and temperature probability density functions in turbulent rotating convection. Phys. Fluids 14, 955962.
15. Hart J. E. & Olsen D. R. 1999 On the thermal offset in turbulent rotating convection. Phys. Fluids 11, 21012107.
16. van Heijst G. J. F. 1983 The shear-layer structure in a rotating fluid near a differentially rotating sidewall. J. Fluid Mech. 130, 112.
17. van Heijst G. J. F. 1984 Source-sink flow in a rotating cylinder. J. Engng Maths 18, 247257.
18. van Heijst G. J. F. 1986 Fluid flow in a partially-filled rotating cylinder. J. Engng Maths 20, 233250.
19. Homsy G. M. & Hudson J. L. 1969 Centrifugally driven thermal convection in a rotating cylinder. J. Fluid Mech. 35, 3352.
20. Julien K., Legg S., McWilliams J. & Werne J. 1996a Hard turbulence in rotating Rayleigh–Bénard convection. Phys. Rev. E 53, R5557R5560.
21. Julien K., Legg S., McWilliams J. & Werne J. 1996b Rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 322, 243273.
22. Julien K., Legg S., McWilliams J. & Werne J. 1999 Plumes in rotating convection. Part 1. Ensemble statistics and dynamical balances. J. Fluid Mech. 391, 151187.
23. King E. M., Stellmach S., Noir J., Hansen U. & Aurnou J. M. 2009 Boundary layer control of rotating convection systems. Nature 457, 301.
24. Kunnen R. P. J., Geurts B. J. & Clercx H. J. H. 2009 Turbulence statistics and energy budget in rotating Rayleigh–Bénard convection. Eur. J. Mech. (B/Fluids) 28, 578589.
25. Kunnen R. P. J., Clercx H. J. H. & Geurts B. J. 2006 Heat flux intensification by vortical flow localization in rotating convection. Phys. Rev. E 74, 056306.
26. Kunnen R. P. J., Clercx H. J. H. & Geurts B. J. 2008a Breakdown of large-scale circulation in turbulent rotating convection. Europhys. Lett. 84, 24001.
27. Kunnen R. P. J., Clercx H. J. H. & Geurts B. J. 2008b Enhanced vertical inhomogeneity in turbulent rotating convection. Phys. Rev. Lett. 101, 174501.
28. Kunnen R. P. J., Geurts B. J. & Clercx H. J. H. 2010a Experimental and numerical investigation of turbulent convection in a rotating cylinder. J. Fluid Mech. 642, 445476.
29. Kunnen R. P. J., Geurts B. J. & Clercx H. J. H. 2010b Vortex statistics in turbulent rotating convection. Phys. Rev. E 82, 036306.
30. Legg S., Julien K., McWilliams J. & Werne J. 2001 Vertical transport by convection plumes: modification by rotation. Phys. Chem. Earth B 26, 259262.
31. Liu Y. & Ecke R. E. 1997 Heat transport scaling in turbulent Rayleigh–Bénard convection: effects of rotation and Prandtl number. Phys. Rev. Lett. 79, 22572260.
32. Liu Y. & Ecke R. E. 2009 Heat transport measurements in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. E 80, 036314.
33. Lohse D. & Xia K. Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.
34. Moore D. W. & Saffman P. G. 1969 The shear-layer structure in a rotating fluid near a differentially rotating sidewall. Phil. Trans. R. Soc. A 264, 597634.
35. Niemela J. J., Babuin S. & Sreenivasan K. R. 2010 Turbulent rotating convection at high Rayleigh and Taylor numbers. J. Fluid Mech. 649, 509.
36. Qiu X. L. & Tong P. 2001 Large scale velocity structures in turbulent thermal convection. Phys. Rev. E 64, 036304.
37. Rossby H. T. 1969 A study of Bénard convection with and without rotation. J. Fluid Mech. 36, 309335.
38. Sakai S. 1997 The horizontal scale of rotating convection in the geostrophic regime. J. Fluid Mech. 333, 8595.
39. Schmitz S. & Tilgner A. 2009 Heat transport in rotating convection without Ekman layers. Phys. Rev. E 80, 015305.
40. Schmitz S. & Tilgner A. 2010 Transitions in turbulent rotating Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 104, 1029–0419.
41. Sprague M., Julien K., Knobloch E. & Werne J. 2006 Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech. 551, 141174.
42. Stevens R. J. A. M., Clercx H. J. H. & Lohse D. 2010a Boundary layers in rotating weakly turbulent Rayleigh–Bénard convection. Phys. Fluids 22, 085103.
43. Stevens R. J. A. M., Clercx H. J. H. & Lohse D. 2011 Effect of plumes on measuring the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 23, 095110.
44. Stevens R. J. A. M., Clercx H. J. H. & Lohse D. 2010c Optimal Prandtl number for heat transfer in rotating Rayleigh–Bénard convection. New J. Phys. 12, 075005.
45. Stevens R. J. A. M., Zhong J.-Q., Clercx H. J. H., Ahlers G. & Lohse D. 2009 Transitions between turbulent states in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 103, 024503.
46. Stewartson K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 1726.
47. Stewartson K. 1966 On almost rigid rotations. Part 2. J. Fluid Mech. 26, 131144.
48. Verzicco R. & Camussi R. 1997 Transitional regimes of low-prandtl thermal convection in a cylindrical cell. Phys. Fluids 9, 12871295.
49. Verzicco R. & Camussi R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.
50. Verzicco R. & Orlandi P. 1996 A finite-difference scheme for three-dimensional incompressible flow in cylindrical coordinates. J. Comput. Phys. 123, 402413.
51. Vorobieff P. & Ecke R. E. 2002 Turbulent rotating convection: an experimental study. J. Fluid Mech. 458, 191218.
52. Weiss S., Stevens R. J. A. M., Zhong J.-Q., Clercx H. J. H., Lohse D. & Ahlers G. 2010 Finite-size effects lead to supercritical bifurcations in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 105, 224501.
53. Zhong F., Ecke R. E. & Steinberg V. 1993 Rotating Rayleigh–Bénard convection: asymmetrix modes and vortex states. J. Fluid Mech. 249, 135159.
54. Zhong J.-Q. & Ahlers G. 2010 Heat transport and the large-scale circulation in rotating turbulent Rayleigh–Bénard convection. J. Fluid Mech. 665, 300333.
55. Zhong J.-Q., Stevens R. J. A. M., Clercx H. J. H., Verzicco R., Lohse D. & Ahlers G. 2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 044502.
56. Zhou Q., Stevens R. J. A. M., Sugiyama K., Grossmann S., Lohse D. & Xia K.-Q. 2010 Prandtl–Blasius temperature and velocity boundary layer profiles in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 664, 297312.
57. Zhou Q. & Xia K.-Q. 2010 Measured instantaneous viscous boundary layer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 104, 104301.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 57 *
Loading metrics...

Abstract views

Total abstract views: 149 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.