Skip to main content
×
Home
    • Aa
    • Aa

Sensitivity of wavepackets in jets to nonlinear effects: the role of the critical layer

  • Gilles Tissot (a1), Mengqi Zhang (a2), Francisco C. Lajús (a1) (a3), André V. G. Cavalieri (a1) and Peter Jordan (a2)...
Abstract

Linear instability waves, or wavepackets, are key building blocks for the jet-noise problem. It has been shown in previous work that linear models correctly predict the evolution of axisymmetric wavepackets up to the end of the potential core of subsonic turbulent jets. Beyond this station, linear models fail, and nonlinearity is the likely missing piece. The essential underlying nonlinear mechanisms are unknown, and it remains unclear how these should be incorporated in a reduced-order model. The nonlinear interactions are considered in this work as an ‘external’ harmonic forcing added to the standard linear model. This modelling framework is explored using a locally parallel resolvent analysis to determine optimal forcing and associated responses, and a global approach based on 4D-Var data assimilation aimed at finding the optimal forcing of the parabolised stability equations that would minimise errors in the predictions of wavepackets. In all of the problems considered, the critical layer is found to be relevant: it is the position where sensitivity of wavepackets to nonlinearity is greatest. It is seen that disturbances are forced around the critical layer, and tilted by shear as they are advected, in a manner suggestive of an Orr-like mechanism. The ensemble of results suggests that critical-layer effects play a central role in the dynamics of wavepackets in subsonic turbulent jets, and that inclusion of such effects may remedy the shortcomings of linear reduced-order models.

Copyright
Corresponding author
Email address for correspondence: Gilles.Tissot@math.univ-toulouse.fr
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. Adam 1984 The critical layers and other singular regions in ideal hydrodynamics and magnetohydrodynamics. Astrophys. Space Sci. 105 (2), 401412.

C. Airiau , A. Bottaro , S. Walther  & D. Legendre 2003 A methodology for optimal laminar flow control: application to the damping of Tollmien–Schlichting waves in a boundary layer. Phys. Fluids 15 (5), 11311145.

T. Alazard 2006 Low Mach number limit of the full Navier–Stokes equations. Arch. Rat. Mech. Anal. 180 (1), 173.

Y. B. Baqui , A. Agarwal , A. V. G. Cavalieri  & S. Sinayoko 2015 A coherence-matched linear source mechanism for subsonic jet noise. J. Fluid Mech. 776, 235267.

S. Beneddine , D. Sipp , A. Arnault , J. Dandois  & L. Lesshafft 2016 Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798, 485504.

T. R. Bewley , P. Moin  & R. Temam 2001 DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447, 179225.

E. J. Brambley , M. Darau  & S. W. Rienstra 2012 The critical layer in linear-shear boundary layers over acoustic linings. J. Fluid Mech. 710, 545568.

L. M. B. C. Campos , J. M. G. S. Oliveira  & M. H. Kobayashi 1999 On sound propagation in a linear shear flow. J. Sound Vib. 219 (5), 739770.

A. V. G. Cavalieri  & A. Agarwal 2014 Coherence decay and its impact on sound radiation by wavepackets. J. Fluid Mech. 748, 399415.

A. V. G. Cavalieri , G. Daviller , P. Comte , P. Jordan , G. Tadmor  & Y. Gervais 2011a Using large eddy simulation to explore sound-source mechanisms in jets. J. Sound Vib. 330 (17), 40984113.

A. V. G. Cavalieri , P. Jordan , A. Agarwal  & Y. Gervais 2011b Jittering wave-packet models for subsonic jet noise. J. Sound Vib. 330 (18), 44744492.

A. V. G. Cavalieri , P. Jordan , T. Colonius  & Y. Gervais 2012 Axisymmetric superdirectivity in subsonic jets. J. Fluid Mech. 704, 388420.

A. V. G. Cavalieri , D. Rodriguez , P. Jordan , T. Colonius  & Y. Gervais 2013 Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559592.

L. Cordier , B. R. Noack , G. Daviller , G. Tissot , G. Lehnasch , J. Delville , M. Balajewicz  & R. Niven 2013 Identification strategies for model-based control. Exp. Fluids 54 (8), 121.

D. G. Crighton  & M. Gaster 1976 Stability of slowly diverging jet flow. J. Fluid Mech. 77 (2), 397413.

G. Dergham , D. Sipp  & J.-C. Robinet 2013 Stochastic dynamics and model reduction of amplifier flows: the backward facing step flow. J. Fluid Mech. 719, 406430.

P. G. Drazin  & W. H. Reid 2004 Hydrodynamic Stability. Cambridge University Press.

J. E. Ffowcs-Williams  & A. J. Kempton 1978 The noise from the large-scale structure of a jet. J. Fluid Mech. 84 (04), 673694.

X. Garnaud , L. Lesshafft , P. J. Schmid  & P. Huerre 2013 The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189202.

M. Gloor , D. Obrist  & L. Kleiser 2013 Linear stability and acoustic characteristics of compressible, viscous, subsonic coaxial jet flow. Phys. Fluids 25 (8), 084102.

K. Gudmundsson  & T. Colonius 2011 Instability wave models for the near field fluctuations of turbulent jets. J. Fluid Mech. 689, 97128.

R. Haberman 1976 Nonlinear perturbations of the Orr–Sommerfeld equation – asymptotic expansion of the logarithmic phase shift across the critical layer. SIAM J. Math. Anal. 7 (1), 7081.

A. Hanifi , P. J. Schmid  & D. S. Henningson 1996 Transient growth in compressible boundary layer flow. Phys. Fluids 8 (3), 826837.

P. C. Hansen 1992 Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34 (4), 561580.

T. Herbert 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29 (1), 245283.

P. Huerre 1980 The nonlinear stability of a free shear layer in the viscous critical layer regime. Phil. Trans. R. Soc. Lond. A 293 (1408), 643672.

P. Huerre  & J. F. Scott 1980 Effects of critical layer structure on the nonlinear evolution of waves in free shear layers. Proc. R. Soc. Lond. A 371 (1747), 509524.

J. Jeun , J. W. Nichols  & M. R. Jovanović 2016 Input–output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids 28 (4), 047101.

P. Jordan  & T. Colonius 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173195.

P. Jordan  & Y. Gervais 2008 Subsonic jet aeroacoustics: associating experiment, modelling and simulation. Exp. Fluids 44 (1), 121.

F. Kerhervé , P. Jordan , A. V. G. Cavalieri , J. Delville , C. Bogey  & D. Juvé 2012 Educing the source mechanism associated with downstream radiation in subsonic jets. J. Fluid Mech. 710, 606640.

M. T. Landahl 1967 A wave-guide model for turbulent shear flow. J. Fluid Mech. 29, 441459.

L. Lesshafft 2015 Preface to this Festschrift for Patrick Huerre. Eur. J. Mech. (B/Fluids) 49, 299300.

C. C. Lin 1954 Some physical aspects of the stability of parallel flows. Proc. Natl Acad. Sci. USA 40 (8), 741747.

S. A. Maslowe 1986 Critical layers in shear flows. Annu. Rev. Fluid Mech. 18 (1), 405432.

B. J. Mckeon  & A. S. Sharma 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.

Á. Meseguer  & L. N. Trefethen 2003 Linearized pipe flow to Reynolds number 107 . J. Comput. Phys. 186 (1), 178197.

A. Michalke 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.

R. Moarref , M. R. Jovanović , J. A. Tropp , A. S. Sharma  & B. J. Mckeon 2014 A low-order decomposition of turbulent channel flow via resolvent analysis and convex optimization. Phys. Fluids 26 (5), 051701.

I. M. Navon 2009 Data assimilation for numerical weather prediction: a review. In Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications. Springer.

J. Nocedal  & St. J. Wright 1999 Numerical Optimization. Springer.

T. J. Poinsot  & S. K. Lele 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.

J. O. Pralits , C. Airiau , A. Hanifi  & D. S. Henningson 2000 Sensitivity analysis using adjoint parabolized stability equations for compressible flows. Flow Turbul. Combust. 65 (3–4), 321346.

J. O. Pralits , A. Hanifi  & D. S. Henningson 2002 Adjoint-based optimization of steady suction for disturbance control in incompressible flows. J. Fluid Mech. 467, 129161.

C. W. Rowley , T. Colonius  & R. M. Murray 2004 Model reduction for compressible flows using POD and Galerkin projection. Physica D 189 (1–2), 115129.

P. J. Schmid 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.

P. J. Schmid  & D. S. Henningson 2001 Stability and Transition in Shear Flows. vol. 142. Springer.

A. S. Sharma  & B. J. Mckeon 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.

J. A. Weideman  & S. C. Reddy 2000 A Matlab differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 188 *
Loading metrics...

Abstract views

Total abstract views: 442 *
Loading metrics...

* Views captured on Cambridge Core between 6th December 2016 - 22nd September 2017. This data will be updated every 24 hours.