Skip to main content

The spatial distribution of gyrotactic swimming micro-organisms in laminar flow fields

  • R. N. BEARON (a1), A. L. HAZEL (a2) and G. J. THORN (a3)

We compare the results of two-dimensional, biased random walk models of individual swimming micro-organisms with advection–diffusion models for the whole population. In particular, we consider the influence of the local flow environment (gyrotaxis) on the resulting motion. In unidirectional flows, the results of the individual and population models are generally in good agreement, even in flows in which the cells can experience a range of shear environments, and both models successfully predict the phenomena of gravitactic focusing. Numerical results are also compared with asymptotic expressions for weak and strong shear. Discrepancies between the models arise in two cases: (i) when reflective boundary conditions change the orientation distribution in the random walk model from that predicted by the long-term asymptotics used to derive the advection–diffusion model; (ii) when the spatial and temporal scales are not large enough for the advection–diffusion model to apply. We also use a simple two-dimensional flow containing a variety of flow regimes to explore what happens when there are localized regions in which the generalized Taylor dispersion theory used in the derivation of the population model does not apply. For spherical cells, we find good agreement between the models outside the ‘break-down’ regions, but comparison of the results within these regions is complicated by the presence of nearby boundaries and their influence on the random walk model. In contrast, for rod-shaped cells which are reorientated by both vorticity and strain, we see qualitatively different spatial patterns between individual and advection–diffusion models even in the absence of gyrotaxis, because cells are advected between regions of differing rates of strain.

Corresponding author
Email address for correspondence:
Hide All
Almog, Y. & Frankel, I. 1998 Rheology of dilute suspensions of Brownian dipolar axisymmetric particles. J. Fluid. Mech. 366, 289310.
Batschelet, E. 1981 Circular Statistics in Biology. Academic.
Bearon, R. N. 2003 An extension of generalized Taylor dispersion in unbounded homogeneous shear flows to run-and-tumble chemotactic bacteria. Phys. Fluids 15 (6), 15521563.
Bearon, R. N. & Grünbaum, D. 2008 From individual behaviour to population models: A case study using swimming algae. J. Theor. Biol. 251 (4), 679697.
Bearon, R. N., Grünbaum, D. & Cattolico, R. A. 2006 Effects of salinity structure on swimming behavior and harmful algal bloom formation in Heterosigma akashiwo, a toxic raphidophyte. Mar. Ecol. Prog. Ser. 306, 153163.
Bees, M. A. & Croze, O. A. 2010 Dispersion of biased swimming micro-organisms in a fluid flowing through a tube. Proc. R. Soc. Lond. B 466 (2119), 20572077.
Bees, M. A., Hill, N. A. & Pedley, T. J. 1998 Analytical approximations for the orientation distribution of small dipolar particles in steady shear flows. J. Math. Biol. 36 (3), 269298.
Birch, D. A., Young, W. R. & Franks, P. J. S. 2008 Thin layers of plankton: Formation by shear and death by diffusion. Deep-Sea Res. Part 1 55 (3), 277295.
Brenner, H. 1979 Taylor dispersion in systems of sedimenting nonspherical Brownian particles 1. Homogeneous, centrosymmetric, axisymmetric particles. J. Colloid Interface Sci. 71 (2), 189208.
Cisneros, L. H., Cortez, R., Dombrowski, C., Goldstein, R. E. & Kessler, J. O. 2007 Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp. Fluids 43 (5), 737753.
Cisneros, L. H., Kessler, J. O., Ortiz, R., Cortez, R. & Bees, M. A. 2008 Unexpected bipolar flagellar arrangements and long-range flows driven by bacteria near solid boundaries. Phys. Rev. Lett. 101 (16), 168102.
Demkowicz, L., Oden, J. T., Rachowicz, W. & Hardy, O. 1989 Toward a universal h-p adaptive finite element strategy, Part 1. Constrained approximation and data structure. Comput. Meth. Appl. Mech. Engng 77, 79112.
Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S. & Liu, J. W. H. 1999 A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Applics. 20, 720755.
Durham, W. M., Kessler, J. O. & Stocker, R. 2009 Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science 323 (5917), 10671070.
Ferreira de Sousa, P. J. S. A. & Pereira, J. C. F. 2009 Dynamics of passive scalars and tracers advected by a two-dimensional tripolar vortex. J. Fluid Mech. 634, 4160.
Frankel, I. & Brenner, H. 1989 On the foundations of generalized Taylor dispersion theory. J. Fluid Mech. 204, 97119.
Frankel, I. & Brenner, H. 1991 Generalized Taylor dispersion phenomena in unbounded homogeneous shear flows. J. Fluid Mech. 230, 147181.
Frankel, I. & Brenner, H. 1993 Taylor dispersion of orientable Brownian particles in unbounded homogeneous shear flows. J. Fluid Mech. 255, 129156.
Franks, P. J. S. 1995 Coupled physical–biological models in oceanography. Rev. Geophys. 33, 11771187.
Ghorai, S. & Hill, N. A. 1999 Development and stability of gyrotactic plumes in bioconvection. J. Fluid Mech. 400, 131.
Heil, M. & Hazel, A. L. 2006 oomph-lib – An object-oriented multi-physics finite-element library in fluid structure interaction. In Lecture Notes on Computational Science and Engineering (ed. Schafer, M. & Bungartz, H.-J.), pp. 1949. Springer.
Hill, N. A. & Bees, M. A. 2002 Taylor dispersion of gyrotactic swimming micro-organisms in a linear flow. Phys. Fluids 14 (8), 25982605.
Hill, N. A. & Häder, D. P. 1997 A biased random walk model for the trajectories of swimming micro-organisms. J. Theor. Biol. 186 (4), 503526.
Hill, N. A. & Pedley, T. J. 2005 Bioconvection. Fluid Dyn. Res. 37 (1–2), 120.
Horner, R. A., Garrison, D. L. & Plumley, F. G. 1997 Harmful algal blooms and red tide problems on the US west coast. Limnol. Oceanogr. 42 (5), 10761088.
Ishikawa, T. 2009 Suspension biomechanics of swimming microbes. J. R. Soc. Interface 6 (39), 815834.
Kessler, J. O. 1985 Hydrodynamic focusing of motile algal cells. Nature 313 (5999), 218220.
Kim, S. & Karrila, S. J. 2005 Microhydrodynamics: Principles and Selected Applications. Dover.
Luchsinger, R., Bergesen, B. & Mitchell, J. G. 1999 Bacteria swimming strategies and turbulence. Biophys. J. 77, 23772386.
Manela, A. & Frankel, I. 2003 Generalized Taylor dispersion in suspensions of gyrotactic swimming micro-organisms. J. Fluid Mech. 490, 99127.
McManus, M. A., Alldredge, A. L., Barnard, A. H., Boss, E., Case, J. F., Cowles, T. J., Donaghay, P. L., Eisner, L. B., Gifford, D. J., Greenlaw, C. F., Herren, C. M., Holliday, D. V., Johnson, D., MacIntyre, S., McGehee, D. M., Osborn, T. R., Perry, M. J., Pieper, R. E., Rines, J. E. B., Smith, D. C., Sullivan, J. M., Talbot, M. K., Twardowski, M. S., Weidemann, A. & Zaneveld, J. R. 2003 Characteristics, distribution and persistence of thin layers over a 48 hour period. Mar. Ecol. Prog. Ser. 261, 119.
Morris, J. F. & Brady, J. F. 1996 Self-diffusion in sheared suspensions. J. Fluid Mech. 312, 232252.
Ottino, J. M. 1990 Mixing, chaotic advection, and turbulence. Annu. Rev. Fluid Mech. 22, 207253.
Pedley, T. J. & Kessler, J. O. 1990 A new continuum model for suspensions of gyrotactic microorganisms. J. Fluid Mech. 212, 155182.
Pedley, T. J. & Kessler, J. O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313358.
Raven, J. A. & Falkowski, P. G. 1999 Oceanic sinks for atmospheric CO2. Plant Cell. Environ. 22 (6), 741755.
Sharples, J., Moore, C. M., Rippeth, T. P., Holligan, P. M., Hydes, D. J., Fisher, N. R. & Simpson, J. H. 2001 Phytoplankton distribution and survival in the thermocline. Limnol. Oceanogr. 46 (3), 486496.
Sobczyk, K. 1991 Stochastic Differential Equations: With Applications to Physics and Engineering. Kluwer.
Steinbuck, J. V., Stacey, M. T., McManus, M. A., Cheriton, O. M. & Ryan, J. P. 2009 Observations of turbulent mixing in a phytoplankton thin layer: Implications for formation, maintenance, and breakdown. Limnol. Oceanogr. 54 (4), 13531368.
Thorn, G. J. & Bearon, R. N. 2010 Transport of gyrotactic organisms in general 3D flow fields. Phys. Fluids 22 (4), 041902.
Torney, C. & Neufeld, Z. 2007 Transport and aggregation of self-propelled particles in fluid flows. Phys. Rev. Lett. 99 (7), 078101.
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203240.
Zienkiewicz, O. C. & Zhu, J. 1992 a The superconvergent patch recovery and a posteriori error estimates. Part 1. The recovery technique. Intl J. Numer. Meth. Engng 33, 13311364.
Zienkiewicz, O. C. & Zhu, J. 1992 b The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Intl J. Numer. Meth. Engng 33, 13651382.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification

Type Description Title
Supplementary materials

Bearon et al. supplementary material
Supplementary material

 PDF (121 KB)
121 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 65 *
Loading metrics...

Abstract views

Total abstract views: 312 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th July 2018. This data will be updated every 24 hours.