André, J. C. & Lesieur, M.
1977
Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J. Fluid Mech.
81, 187–207.

Bellet, F., Godeferd, F. S., Scott, J. F. & Cambon, C.
2006
Wave turbulence in rapidly rotating flows. J. Fluid Mech.
562, 83–121.

Brethouwer, G.
2005
The effect of rotation on rapidly sheared homogeneous turbulence and passive scalar transport. Linear theory and direct numerical simulation. J. Fluid Mech.
542, 305–342.

Cambon, C., Danaila, L., Godeferd, F. S. & Scott, J. F.
2013
Third-order statistics and the dynamics of strongly anisotropic turbulent flows. J. Turbul.
14 (3), 121–160.

Cambon, C. & Jacquin, L.
1989
Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech.
202, 295–317.

Cambon, C., Jeandel, D. & Mathieu, J.
1981
Spectral modelling of homogeneous non-isotropic turbulence. J. Fluid Mech.
104, 247–262.

Cambon, C., Mansour, N. N. & Godeferd, F. S.
1997
Energy transfer in rotating turbulence. J. Fluid Mech.
337, 303–332.

Cambon, C. & Rubinstein, R.
2006
Anisotropic developments for homogeneous shear flows. Phys. Fluids
18, 085106.

Cambon, C. & Scott, J. F.
1999
Linear and nonlinear models of anisotropic turbulence. Annu. Rev. Fluid Mech.
31, 1–53.

Canuto, V. M. & Dubovikov, M. S.
1996a
A dynamical model for turbulence. I. General formalism. Phys. Fluids
8 (2), 571–586.

Canuto, V. M. & Dubovikov, M. S.
1996b
A dynamical model for turbulence. II. Shear-driven flows. Phys. Fluids
8 (2), 587–598.

Canuto, V. M. & Dubovikov, M. S.
1996c
A dynamical model for turbulence. III. Numerical results. Phys. Fluids
8 (2), 599–613.

Chasnov, J. R.
1995
The decay of axisymmetric homogeneous turbulence. Phys. Fluids
7 (3), 600–605.

Chen, J., Meneveau, C. & Katz, J.
2006
Scale interactions of turbulence subjected to a straining–relaxation–destraining cycle. J. Fluid Mech.
562, 123–150.

Choi, K.-S. & Lumley, J. L.
2001
The return to isotropy of homogeneous turbulence. J. Fluid Mech.
436, 59–84.

Clark, T. T. & Zemach, C.
1995
A spectral model applied to homogeneous turbulence. Phys. Fluids
7 (7), 1674–1694.

Corrsin, S.1958 On local isotropy in turbulent shear flow. *NACA RM* 58B11.

Craft, T. J., Ince, N. Z. & Launder, B. E.
1996
Recent developments in second-moment closure for buoyancy-affected flows. Dyn. Atmos. Oceans
23, 99–114.

Craft, T. J. & Launder, B. E.
2001
Principles and performance of TCL-based second-moment closures. Flow Turbul. Combust.
66, 355–372.

Davidson, P. A., Okamoto, N. & Kaneda, Y.
2012
On freely decaying, anisotropic, axisymmetric Saffman turbulence. J. Fluid Mech.
706, 150–172.

Favier, B. F. N., Godeferd, F. S., Cambon, C., Delache, A. & Bos, W. J. T.
2011
Quasi-static magnetohydrodynamic turbulence at high Reynolds number. J. Fluid Mech.
681, 434–461.

Gence, J. N.
1983
Homogeneous turbulence. Annu. Rev. Fluid Mech.
15, 201–222.

Gence, J. N. & Mathieu, J.
1979
On the application of successive plane strains to grid-generated turbulence. J. Fluid Mech.
93, 501–513.

Gence, J. N. & Mathieu, J.
1980
The return to isotropy of an homogeneous turbulence having been submitted to two successive plane strains. J. Fluid Mech.
101, 555–566.

Godeferd, F. S. & Cambon, C.
1994
Detailed investigation of energy transfers in homogeneous stratified turbulence. Phys. Fluids
6, 2084–2100.

Herring, J. R.
1974
Approach of axisymmetric turbulence to isotropy. Phys. Fluids
17 (5), 859–872.

Isaza, J. C. & Collins, L. R.
2009
On the asymptotic behaviour of large-scale turbulence in homogeneous shear flow. J. Fluid Mech.
637, 213–239.

Ishihara, T., Yoshida, K. & Kaneda, Y.
2002
Anisotropic velocity correlation spectrum at small scales in a homogeneous turbulent shear flow. Phys. Rev. Lett.
88, 154501,1–4.

Kaneda, Y.
1981
Renormalized expansions in the theory of turbulence with the use of the Lagrangian position function. J. Fluid Mech.
107, 131–145.

Kassinos, S. C. & Akylas, E.
2012
Advances in particle representation modeling of homogeneous turbulence: from the linear PRM version to the interacting viscoelastic IPRM. In ERCOFTAC Series, vol. 18, pp. 81–101.

Kassinos, S. C. & Reynolds, W. C.
1997
Advances in structure-based turbulence modeling. In Annual Research Briefs – Center for Turbulence Research, pp. 179–193.

Kassinos, S. C., Reynolds, W. C. & Rogers, M. M.
2001
One-point turbulence structure tensors. J. Fluid Mech.
428, 231–248.

Kim, S.-W. & Chen, C.-P.
1989
A multiple-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum. Numer. Heat Transfer B
16, 193–211.

Kraichnan, R. H.
1959
The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech.
5, 497–543.

Kraichnan, R. H.
1972
Test-field model for inhomogeneous turbulence. J. Fluid Mech.
56, 287–304.

Kraichnan, R. H. & Herring, J. R.
1978
A strain-based Lagrangian-history turbulence theory. J. Fluid Mech.
88, 355–367.

Launder, B. E., Reece, G. J. & Rodi, W.
1975
Progress in the development of a Reynolds-stress turbulent closure. J. Fluid Mech.
68, 537–566.

Lesieur, M.
2008
Turbulence in Fluids, 4th edn. Springer.

Leslie, D. C.
1973
Developments in the Theory of Turbulence. Clarendon.

Lumley, J. L.
1967
Similarity and the turbulent energy spectrum. Phys. Fluids
10 (4), 855–858.

Lumley, J. L.1975 *Lectures Series*, 76. Von Karman Institute.

Meyers, J. & Meneveau, C.
2008
A functional form of the energy spectrum parametrizing bottleneck and intermittency effects. Phys. Fluids
20, 065109.

Millionschikov, M. D.
1941
Theory of homogeneous isotropic turbulence. Dokl. Akad. Nauk SSSR
33, 22–24.

Mons, V., Meldi, M. & Sagaut, P.
2014
Numerical investigation on the partial return to isotropy of freely decaying homogeneous axisymmetric turbulence. Phys. Fluids
26, 025110.

O’Brien, E. F. & Francis, G. C.
1963
A consequence of the zero fourth cumulant approximation. J. Fluid Mech.
13, 369–382.

Ogura, Y.
1963
A consequence of the zero fourth cumulant approximation in the decay of isotropic turbulence. J. Fluid Mech.
16, 33–40.

Orszag, S. A.
1970
Analytical theories of turbulence. J. Fluid Mech.
41, 363–386.

Piquet, J.
2001
Turbulent Flows – Models and Physics, 2nd edn. Springer.

Pope, S. B.
2000
Turbulent Flows. Cambridge University Press.

Pouquet, A., Lesieur, M., André, J. C. & Basdevant, C.
1975
Evolution of high Reynolds number two-dimensional turbulence. J. Fluid Mech.
72, 305–319.

Proudman, I. & Reid, W. H.
1954
On the decay of a normally distributed and homogeneous turbulent velocity field. Phil. Trans. R. Soc. Lond. A
297, 163–189.

Rogers, M. M., Moin, P. & Reynolds, W. C.1986 The structure and modelling of the hydrodynamic and passive scalar fields in homogeneous shear turbulence. *Report No.* TF-25. Department of Mechanical Engineering, Stanford University, Stanford, CA.

Rohr, J. J., Itsweire, E. C., Helland, K. N. & Van Atta, C. W.
1988
An investigation of the growth of turbulence in a uniform-mean-shear flow. J. Fluid Mech.
187, 1–33.

Rubinstein, R.
1996
A relaxation approximation for time-dependent second-order effects in shear turbulence. Theor. Comput. Fluid Dyn.
8, 377–386.

Rubinstein, R., Kurien, S. & Cambon, C.
2015
Scalar and tensor spherical harmonics expansion of the velocity correlation in homogeneous anisotropic turbulence. J. Turbul.
16 (11), 1058–1075.

Sagaut, P. & Cambon, C.
2008
Homogeneous Turbulence Dynamics. Cambridge University Press.

Schiestel, R.
1987
Multiple-time-scale modeling of turbulent flows in one-point closures. Phys. Fluids
30 (3), 722–731.

Shen, X. & Warhaft, Z.
2000
The anisotropy of the small scale structure in high Reynolds number
$(R_{{\it\lambda}}\sim 1000)$
turbulent shear flow. Phys. Fluids
12, 2976–2989.
Speziale, C. G., Sarkar, S. & Gatski, T. B.
1991
Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech.
227, 245–272.

Tavoularis, S.
1985
Asymptotic laws for transversely homogeneous turbulent shear flows. Phys. Fluids
28, 999–1001.

Tavoularis, S. & Corrsin, S.
1981
Experiments in nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 1. J. Fluid Mech.
104, 311–347.

Tavoularis, S. & Karnik, U.
1989
Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence. J. Fluid Mech.
204, 457–478.

Townsend, A. A.
1976
The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.

Waleffe, F.
1992
The nature of triad interactions in homogeneous turbulence. Phys. Fluids
4, 350–363.

Weinstock, J.
2013
Analytical theory of homogeneous mean shear turbulence. J. Fluid Mech.
727, 256–281.

Yoshida, K., Ishihara, T. & Kaneda, Y.
2003
Anisotropic spectrum of homogeneous turbulent shear flow in a Lagrangian renormalized approximation. Phys. Fluids
15 (8), 2385–2397.

Zhou, Y.
2010
Renormalization group theory for fluid and plasma turbulence. Phys. Rep.
488, 1–49.

Zusi, C. J. & Perot, J. B.
2013
Simulation and modeling of turbulence subjected to a period of uniform plane strain. Phys. Fluids
25, 110819.

Zusi, C. J. & Perot, J. B.
2014
Simulation and modeling of turbulence subjected to a period of axisymmetric contraction or expansion. Phys. Fluids
26, 115103.