Skip to main content

The squeezing of red blood cells through capillaries with near-minimal diameters

  • D. Halpern (a1) and T. W. Secomb (a1)

An analysis is presented of the mechanics of red blood cells flowing in very narrow tubes. Mammalian red cells are highly flexible, but their deformations satisfy two significant constraints. They must deform at constant volume, because the contents of the cell are incompressible, and also at nearly constant surface area, because the red cell membrane strongly resists dilation. Consequently, there exists a minimal tube diameter below which passage of intact cells is not possible. A cell in a tube with this diameter has its critical shape: a cylinder with hemispherical ends. Here, flow of red cells in tubes with near-minimal diameters is analysed using lubrication theory. When the tube diameter is slightly larger than the minimal value, the cell shape is close to its shape in the critical case. However, the rear end of the cell becomes flattened and then concave with a relatively small further increase in the diameter. The changes in cell shape and the resulting rheological parameters are analysed using matched asymptotic expansions for the high-velocity limit and using numerical solutions. Predictions of rheological parameters are also obtained using the assumption that the cell is effectively rigid with its critical shape, yielding very similar results. A rapid decrease in the apparent viscosity of red cell suspensions with increasing tube diameter is predicted over the range of diameters considered. The red cell velocity is found to exceed the mean bulk velocity by an amount that increases with increasing tube diameter.

Hide All
Batchelor, G. K.: 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Bender, C. M. & Orszag, S. A., 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.
Bretherton, F. P.: 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.
Canham, P. B. & Burton, A. C., 1968 Distribution of size and shape in populations of normal human red blood cells. Circulation Res. 22, 405422.
Evans, E. A. & Skalak, R., 1980 Mechanics and Thermodynamics of Biomembranes. Boca Raton, Florida: CRC Press.
Fahraeus, R. & Lindqvist, T., 1931 The viscosity of blood flow in narrow capillaries. Am. J. Physiol. 96, 562568.
Gaehtgens, P.: 1980 Flow of blood through narrow capillaries: Rheological mechanisms determining capillary hematocrit and apparent viscosity. Biorheol. 17, 183189.
Gradshteyn, I. S. & Ryzhik, I. M., 1980 Table of Integrals, Series and Products (Corrected and enlarged edition). Academic.
özkaya, N. 1986 Viscous flow of particles in tubes: Lubrication theory and finite element models. Ph.D. thesis, Columbia University, New York.
özkaya, N. & Skalak, R. 1983 The steady flow of particles in a tube. In 1983 Advances in Bioengineering (ed. D. L. Bartel), pp. 910. ASME.
Papenfuss, H.-D. & Gross, J. F. 1981 Microhemodynamics of capillary networks. Biorheol. 18, 673692.
Secomb, T. W.: 1987 Flow dependent rheological properties of blood in capillaries. Microvasc. Res. 34, 4658.
Secomb, T. W.: 1988 Interaction between bending and tension forces in bilayer membranes. Biophys. J. 54, 743746.
Secomb, T. W. & Gross, J. F., 1983 Flow of red blood cells in narrow capillaries: role of membrance tension. Intl J. Microcirc. Clin. Exp. 2, 229240.
Secomb, T. W., Skalak, R., özkaya, N. & Gross, J. F. 1986 Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163, 405423.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed