Skip to main content
×
×
Home

Steady and transient response of a laminar separation bubble to controlled disturbances

  • Serhiy Yarusevych (a1) and Marios Kotsonis (a2)
Abstract

The steady and transient response of a laminar separation bubble to flow disturbances is examined experimentally. Wind tunnel experiments are performed on a NACA 0012 aerofoil at a chord Reynolds number of 130 000 and angle of attack of $2^{\circ }$ . Under the investigated conditions, a laminar separation bubble forms on the suction side of the aerofoil in the unperturbed flow. Periodic disturbances are introduced into the boundary layer just upstream of separation by means of a surface-mounted dielectric barrier discharge plasma actuator. Two-component, time-resolved particle image velocimetry measurements are performed to characterise both quasi-steady and transient response of the flow to periodic disturbances. The results show that the dynamics of the laminar separation bubble is dominated by the periodic shedding of shear layer vortices, forming upstream of the mean reattachment location due to the amplification of unstable flow disturbances. Introducing the controlled perturbations leads to significant changes in separation bubble topology and the characteristics of the dominant coherent structures, with the effect dependent on both amplitude and frequency of disturbances. Linear stability analysis demonstrates that the induced changes to the mean bubble topology affect the stability characteristics, reducing the maximum growth rate and the frequency of the most amplified disturbances by 35 % and 20 %, respectively, when the bubble length is reduced by up to 40 %. The observed changes in stability characteristics are shown to correlate with the attendant variations in the shape factor. The transient response of the bubble is associated with significant changes in the separation bubble dynamics, with significant differences observed between the relative duration ( ${\approx}45\,\%$ ) of the transients flow response associated with the introduction and removal of the controlled disturbances. A detailed analysis of the results offers new insight into the response of laminar separation bubbles to changes in the disturbance environment.

Copyright
Corresponding author
Email address for correspondence: syarus@uwaterloo.ca
References
Hide All
Alam M. & Sandham N. D. 2000 Direct numerical simulation of short laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 223250.
Amitay M. & Glezer A. 2002 Controlled transients of flow reattachment over stalled airfoils. Intl J. Heat Fluid Flow 23 (5), 690699.
Asada K., Nonomura T., Aono H., Sato M., Okada K. & Fujii K. 2015 Les of transient flows controlled by dbd plasma actuator over a stalled airfoil. Intl J. Comput. Fluid Dyn. 29 (3–5), 215229.
Ashpis D. E. & Reshotko E. 1990 The vibrating ribbon problem revisited. J. Fluid Mech. 213, 531547.
Benard N., Cattafesta L. N. III, Moreau E., Griffin J. & Bonnet J. P. 2011 On the benefits of hysteresis effects for closed-loop separation control using plasma actuation. Phys. Fluids 23 (8), 083601.
Benard N. & Moreau E. 2014 Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp. Fluids 55 (11), 143.
Boiko A. V., Grek G. R., Dovgal A. V. & Kozlov V. V. 2002 The Origin of Turbulence in Near-Wall Flows. Springer.
Boutilier M. S. H. & Yarusevych S. 2012 Separated shear layer transition over an airfoil at a low Reynolds number. Phys. Fluids 24 (8), 084105.
Boutilier M. S. H. & Yarusevych S. 2013 Sensitivity of linear stability analysis of measured separated shear layers. Eur. J. Mech. (B/Fluids) 37, 129142.
Bridges J. & Morris P. J. 1984 Differential eigenvalue problems in which the parameter appears nonlinearly. J. Comput. Phys. 437, 222224.
Brinkerhoff J. R. & Yaras M. I. 2011 Interaction of viscous and inviscid instability modes in separation bubble transition. Phys. Fluids 23 (12), 124102.
Brooks T. F., Marcolini M. A. & Pope D. S. 1986 Airfoil trailing-edge flow measurements. AIAA J. 24 (8), 12451251.
Burgmann S. & Schröder W. 2008 Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements. Exp. Fluids 45 (4), 675691.
Carmichael B. H.1981 Low Reynolds number airfoil survey. NASA CR 165803.
Cattafesta L. N. III & Sheplak M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247272.
Corke T. C., Bowles P. O., He C. & Matlis E. H. 2011 Sensing and control of flow separation using plasma actuators. Phil. Trans. R. Soc. Lond. A 369 (1940), 14591475.
Corke T. C., Enloe C. L. & Wilkinson S. P. 2010 Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42, 505529.
Darabi A. & Wygnanski I. 2004 Active management of naturally separated flow over a solid surface. Part 1. The forced reattachment process. J. Fluid Mech. 510, 105129.
Debien A., Aubrun S., Mazellier N. & Kourta A. 2015 Active separation control process over a sharp edge ramp. In Ninth International Symposium on Turbulence and Shear Flow Phenomena, Melbourne, Australia.
Desquesnes G., Terracol M. & Sagaut P. 2007 Numerical investigation of the tone noise mechanism over laminar airfoils. J. Fluid Mech. 591, 155182.
Diwan S. S. & Ramesh O. N. 2009 On the origin of the inflectional instability of a laminar separation bubble. J. Fluid Mech. 629, 263298.
Dovgal A. V., Kozlov V. V. & Michalke A. 1994 Laminar boundary layer separation: instability and associated phenomena. Prog. Aerosp. Sci. 30, 6194.
Gaster M.1967 The structure and behaviour of Laminar separation bubbles. Rep. Mem. No. 3595. Aeronautical Research Council.
Glezer A. & Amitay M. 2002 Synthetic jets. Annu. Rev. Fluid Mech. 34 (1), 503529.
Goodfellow S. D., Yarusevych S. & Sullivan P. E. 2012 Momentum coefficient as a parameter for aerodynamic flow control with synthetic jets. AIAA J. 51 (3), 623631.
Häggmark C. P., Hildings C. & Henningson D. S. 2001 A numerical and experimental study of a transitional separation bubble. Aerosp. Sci. Technol. 5 (5), 317328.
Hain R., Kähler C. J. & Radespiel R. 2009 Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. J. Fluid Mech. 630, 129153.
Jeong J. & Hussain F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Jones L. E., Sandberg R. D. & Sandham N. D. 2008 Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602, 175207.
Kotapati R. B., Mittal R., Marxen O., Ham F., You D. & Cattafesta L. N. 2010 Nonlinear dynamics and synthetic-jet-based control of a canonical separated flow. J. Fluid Mech. 654, 6597.
Kotsonis M. 2015 Diagnostics for characterisation of plasma actuators. Meas. Sci. Technol. 26 (9), 092001.
Kotsonis M. & Ghaemi S. 2011 Forcing mechanisms of dielectric barrier discharge plasma actuators at carrier frequency of 625 Hz. J. Appl. Phys. 110 (11), 113301.
Kotsonis M., Pul R. & Veldhuis L. 2014 Influence of circulation on a rounded-trailing-edge airfoil using plasma actuators. Exp. Fluids 55 (7), 114.
Lang M., Rist U. & Wagner S. 2004 Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV. Exp. Fluids 36 (1), 4352.
LeBlanc P., Blackwelder R. & Liebeck R. 1989 A compariosn between boundary layer measurements in a laminar separation bubble flow and linear stability theory calculations. In Low Reynolds Number Aerodynamics Conference, Notre Dame, Springer.
Lengani D., Simoni D., Ubaldi M. & Zunino P. 2014 Pod analysis of the unsteady behavior of a laminar separation bubble. Exp. Therm. Fluid Sci. 58, 7079.
Lin J. C. M. & Pauley L. L. 1996 Low-Reynolds-number separation on an airfoil. AIAA J. 34 (8), 15701577.
Lissaman P. B. S. 1983 Low-Reynolds-number airfoils. Annu. Rev. Fluid Mech. 15 (1), 223239.
Marxen O. & Henningson D. S. 2011 The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble. J. Fluid Mech. 671, 133.
Marxen O., Kotapati R. B., Mittal R. & Zaki T. 2015 Stability analysis of separated flows subject to control by zero-net-mass-flux jet. Phys. Fluids 27 (2), 024107.
Marxen O., Lang M. & Rist U. 2012 Discrete linear local eigenmodes in a separating laminar boundary layer. J. Fluid Mech. 711, 126.
Marxen O., Lang M. & Rist U. 2013 Vortex formation and vortex breakup in a laminar separation bubble. J. Fluid Mech. 728, 5890.
Marxen O. & Rist U. 2010 Mean flow deformation in a laminar separation bubble: separation and stability characteristics. J. Fluid Mech. 660, 3754.
Mathis R., Lebedev A., Collin E., Delville J. & Bonnet J. P. 2009 Experimental study of transient forced turbulent separation and reattachment on a bevelled trailing edge. Exp. Fluids 46 (1), 131146.
Michelis T. & Kotsonis M. 2015 Flow control on a transport truck side mirror using plasma actuators. Trans. ASME J. Fluids Engng 137 (11), 111103.
Mueller T. J. & DeLaurier J. D. 2003 Aerodynamics of small vehicles. Annu. Rev. Fluid Mech. 35 (1), 89111.
Ol M. V., Mcauliffe B. R., Hanff E. S., Scholz U. & Kähler C. 2005 Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities. In 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto.
Olson D. A., Katz A. W., Naguib A. M., Koochesfahani M. M., Rizzetta D. P. & Visbal M. R. 2013 On the challenges in experimental characterization of flow separation over airfoils at low Reynolds number. Exp. Fluids 54 (2), 111.
Pröbsting S. & Yarusevych S. 2015 Laminar separation bubble development on an airfoil emitting tonal noise. J. Fluid Mech. 780, 167191.
Rist U. & Maucher U. 2002 Investigations of time-growing instabilities in laminar separation bubbles. Eur. J. Mech. (B/Fluids) 21 (5), 495509.
Rist U., Maucher U. & Wagner S. 1996 Direct numerical simulation of some fundamental problems related to transition in laminar separation bubbles. In Comput. Meth. Appl. Sci., pp. 319325. John Wiley & Sons.
Rizzetta D. P. & Visbal M. R. 2011 Numerical investigation of plasma-based control for low-Reynolds-number airfoil flows. AIAA J. 49 (2), 411425.
Robinet J. C. 2013 Instabilities in laminar separation bubbles. J. Fluid Mech. 732, 14.
Rodríguez D., Gennaro E. M. & Juniper M. P. 2013 The two classes of primary modal instability in laminar separation bubbles. J. Fluid Mech. 734, R4.
Schmid P. J. & Henningson D. S. 2001 Stability and Transition in Shear Flows. vol. 142. Springer.
Sciacchitano A., Neal D. R., Smith B. L., Warner S. O., Vlachos P. P., Wieneke B. & Scarano F. 2015 Collaborative framework for piv uncertainty quantification: comparative assessment of methods. Meas. Sci. Technol. 26 (7), 116.
Serna J. & Lázaro B. J. 2015 Experiments on natural transition in separation bubbles. Procedia IUTAM 14, 496502.
Siauw W. L., Bonnet J. P., Tensi J., Cordier L., Noack B. R. & Cattafesta L. 2010 Transient dynamics of the flow around a Naca 0015 airfoil using fluidic vortex generators. Intl J. Heat Fluid Flow 31 (3), 450459.
Tani I. 1964 Low-speed flows involving bubble separations. Prog. Aerosp. Sci. 5, 70103.
Theofilis V., Hein S. & Dallmann U. 2000 On the origins of unsteadiness and three-dimensionality in a laminar separation bubble. Phil. Trans. R. Soc. Lond. A 358 (1777), 32293246.
Watmuff J. H. 1999 Evolution of a wave packet into vortex loops in a laminar separation bubble. J. Fluid Mech. 397, 119169.
Yarusevych S., Kawall J. G. & Sullivan P. E. 2006a Airfoil performance at low Reynolds numbers in the presence of periodic disturbances. Trans. ASME J. Fluids Engng 128 (3), 587595.
Yarusevych S., Sullivan P. E. & Kawall J. G. 2006b Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers. Phys. Fluids 18 (4), 044101.
Yarusevych S., Sullivan P. E. & Kawall J. G. 2007 Effect of acoustic excitation amplitude on airfoil boundary layer and wake development. AIAA J. 45 (4), 760771.
Yarusevych S., Sullivan P. E. & Kawall J. G. 2009 On vortex shedding from an airfoil in low-Reynolds-number flows. J. Fluid Mech. 632, 245271.
Zaman K. B. M. Q. 1992 Effect of acoustic excitation on stalled flows over an airfoil. AIAA J. 30 (6), 14921499.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 252 *
Loading metrics...

Abstract views

Total abstract views: 458 *
Loading metrics...

* Views captured on Cambridge Core between 26th January 2017 - 21st January 2018. This data will be updated every 24 hours.