Skip to main content
×
Home
    • Aa
    • Aa

The structure of zonal jets in geostrophic turbulence

  • Richard K. Scott (a1) and David G. Dritschel (a1)
Abstract
Abstract

The structure of zonal jets arising in forced-dissipative, two-dimensional turbulent flow on the -plane is investigated using high-resolution, long-time numerical integrations, with particular emphasis on the late-time distribution of potential vorticity. The structure of the jets is found to depend in a simple way on a single non-dimensional parameter, which may be conveniently expressed as the ratio , where and are two natural length scales arising in the problem; here may be taken as the r.m.s. velocity, is the background gradient of potential vorticity in the north–south direction, and is the rate of energy input by the forcing. It is shown that jet strength increases with , with the limiting case of the potential vorticity staircase, comprising a monotonic, piecewise-constant profile in the north–south direction, being approached for . At lower values, eddies created by the forcing become sufficiently intense to continually disrupt the steepening of potential vorticity gradients in the jet cores, preventing strong jets from developing. Although detailed features such as the regularity of jet spacing and intensity are found to depend on the spectral distribution of the forcing, the approach of the staircase limit with increasing is robust across a variety of different forcing types considered.

Copyright
Corresponding author
Email address for correspondence: rks@mcs.st-and.ac.uk
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. M. P. Baldwin , P. B. Rhines , H.-P. Huang & M. E. McIntyre 2007 The jet-stream conundrum. Science 315, 467468.

2. P. Berloff , S. Karabasov , J. T. Farrar & I. Kamenkovich 2011 On latency of multiple zonal jets in the oceans. J. Fluid Mech. 686, 534567.

3. D. G. Dritschel 1989 Contour dynamics and contour surgery: numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows. Comput. Phys. Rep. 10, 78146.

4. D. G. Dritschel & M. H. P. Ambaum 1997 A contour-advective semi-Lagrangian numerical algorithm for simulating fine-scale conservative dynamical fields. Q. J. R. Meteorol. Soc. 123, 10971130.

5. D. G. Dritschel & J. Fontane 2010 The combined Lagrangian advection method. J. Comput. Phys. 229, 54085417.

6. D. G. Dritschel & M. E. McIntyre 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855874.

7. D. G. Dritschel & R. K. Scott 2009 On the simulation of nearly inviscid two-dimensional turbulence. J. Comput. Phys. 228, 27072711.

8. D. G. Dritschel & R. K. Scott 2011 Jet sharpening by turbulent mixing. Phil. Trans. R. Soc. Lond. A 369, 754770.

9. T. J. Dunkerton & R. K. Scott 2008 A barotropic model of the angular momentum conserving potential vorticity staircase in spherical geometry. J. Atmos. Sci. 65, 11051136.

10. J. Fontane & D. Dritschel 2009 The HyperCASL algorithm: a new approach to the numerical simulation of geophysical flows. J. Comput. Phys. 228, 64116425.

11. B. Galperin , H. Nakano , H.-P. Huang & S. Sukoriansky 2004 The ubiquitous zonal jets in the atmospheres of giant planets and earth’s oceans. Geophys. Res. Lett. 31, L13303.

12. H.-P. Huang , B. Galperin & S. Sukoriansky 2001 Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere. Phys. Fluids 13, 225240.

14. P. S. Marcus 1993 Jupiter’s great red spot and other vortices. Annu. Rev. Astron. Astrophys. 31, 523573.

15. M. E. McIntyre 1982 How well do we understand the dynamics of stratospheric warmings?. J. Meteorol. Soc. Japan 60, 3765, special issue in commemoration of the centennial of the Meteorological Society of Japan, ed. K. Ninomiya.

16. M. E. McIntyre 2008 Potential-vorticity inversion and the wave–turbulence jigsaw: some recent clarifications. Adv. Geosci. 15, 4756.

17. R. L. Panetta 1993 Zonal jets in wide baroclinically unstable regions: persistence and scale selection. J. Atmos. Sci. 50, 20732106.

18. W. R. Peltier & G. R. Stuhne 2002 The upscale turbulent cascade: shear layers, cyclones and gas giant bands. In Meteorology at the Millennium (ed. R. Pierce ). Academic.

20. P. B. Rhines 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417443.

21. P. G. Saffman 1971 On the spectrum and decay of random two-dimensional vorticity distributions at large Reynolds number. Stud. Appl. Maths 50, 377383.

22. R. K. Scott 2010 The structure of zonal jets in shallow water turbulence on the sphere. In IUTAM Symposium on Turbulence in the Atmosphere and Oceans (ed. D. G. Dritschel ), IUTAM Bookseries, vol. 28 , pp. 243252. Springer.

23. R. K. Scott & L. M. Polvani 2007 Forced-dissipative shallow water turbulence on the sphere and the atmospheric circulation of the gas planets. J. Atmos. Sci. 64, 31583176.

25. S. Sukoriansky , N. Dikovskaya & B. Galperin 2007 On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci. 64, 33123327.

26. G. K. Vallis 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.

27. G. P. Williams 1978 Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci. 35, 13991424.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 139 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th September 2017. This data will be updated every 24 hours.