Skip to main content
×
×
Home

Super- and sub-rotating equatorial jets in shallow water models of Jovian atmospheres: Newtonian cooling versus Rayleigh friction

  • Emma S. Warneford (a1) and Paul J. Dellar (a1)
Abstract

Numerical simulations of the shallow water equations on rotating spheres produce mixtures of robust vortices and alternating zonal jets, as seen in the atmospheres of the gas giant planets. However, simulations that include Rayleigh friction invariably produce a sub-rotating (retrograde) equatorial jet for Jovian parameter regimes, whilst observations of Jupiter show a super-rotating (prograde) equatorial jet that has persisted over several decades. Super-rotating equatorial jets have recently been obtained in shallow water simulations that include a Newtonian relaxation of perturbations to the layer thickness to model radiative cooling to space, and in simulations of the thermal shallow water equations that include a similar relaxation term in their temperature equation. Simulations of global quasigeostrophic forms of these different models produce equatorial jets in the same directions as the parent models, suggesting that the mechanism responsible for setting the direction lies within quasigeostrophic theory. We provide such a mechanism by calculating the effective force acting on the thickness-weighted zonal mean flow due to the decay of an equatorially trapped Rossby wave. Decay due to Newtonian cooling creates an eastward zonal mean flow at the equator, consistent with the formation of a super-rotating equatorial jet, while decay due to Rayleigh friction leads to a westward zonal mean flow at the equator, consistent with the formation of a sub-rotating equatorial jet. In both cases the meridionally integrated zonal mean of the absolute zonal momentum is westward, consistent with the standard result that Rossby waves carry westward pseudomomentum, but this does not preclude the zonal mean flow being eastward on and close to the equator.

Copyright
Corresponding author
Email address for correspondence: dellar@maths.ox.ac.uk
References
Hide All
Andrews D. & McIntyre M. 1976a Planetary waves in horizontal and vertical shear: the generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci. 33, 20312048.
Andrews D. & McIntyre M. 1976b Planetary waves in horizontal and vertical shear: asymptotic theory for equatorial waves in weak shear. J. Atmos. Sci. 33, 20492053.
Andrews D. G. & McIntyre M. E. 1978 Generalized Eliassen–Palm and Charney–Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci. 35, 175185.
Beebe R. 1994 Characteristic zonal winds and long-lived vortices in the atmospheres of the outer planets. Chaos 4, 113122.
Bühler O. 2000 On the vorticity transport due to dissipating or breaking waves in shallow-water flow. J. Fluid Mech. 407, 235263.
Bühler O. 2014 Waves and Mean Flows, 2nd edn. Cambridge University Press.
Charney J. G. 1949 On a physical basis for numerical prediction of large-scale motions in the atmosphere. J. Atmos. Sci. 6, 372385.
Cho J. Y.-K. & Polvani L. M. 1996a The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Phys. Fluids 8, 15311552.
Cho J. Y.-K. & Polvani L. M. 1996b The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets. Science 273, 335337.
Daley R. 1983 Linear non-divergent mass-wind laws on the sphere. Tellus A 35A, 1727.
Dickinson R. E. 1969 Theory of planetary wave-zonal flow interaction. J. Atmos. Sci. 26, 7381.
Dowling T. E. 1995 Estimate of Jupiter’s deep zonal-wind profile from Shoemaker–Levy 9 data and Arnol’d’s second stability criterion. Icarus 117, 439442.
Dowling T. E. & Ingersoll A. P. 1989 Jupiter’s great red spot as a shallow water system. J. Atmos. Sci. 46, 32563278.
Gill A. E. 1982 Atmosphere Ocean Dynamics. Academic.
Green J. S. A. 1970 Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Q. J. R. Meteorol. Soc. 96, 157185.
Haynes P. H. & McIntyre M. E. 1990 On the conservation and impermeability theorems for potential vorticity. J. Atmos. Sci. 47, 20212031.
Held I. M.2000 The general circulation of the atmosphere: superrotation. Lectures presented at the 2000 Geophysical Fluid Dynamics Summer Program, Woods Hole Oceanographic Institution, Woods Hole, MA, available from http://www.whoi.edu/page.do?pid=13076.
Hirst A. C. 1986 Unstable and damped equatorial modes in simple coupled ocean-atmosphere models. J. Atmos. Sci. 43, 606632.
Hou T. Y. & Li R. 2007 Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226, 379397.
Hupca I. O., Falcou J., Grigori L. & Stompor R. 2012 Spherical harmonic transform with GPUs. Lecture Notes in Computer Science 7155, 355366.
Iacono R., Struglia M. V. & Ronchi C. 1999a Spontaneous formation of equatorial jets in freely decaying shallow water turbulence. Phys. Fluids 11, 12721274.
Iacono R., Struglia M. V., Ronchi C. & Nicastro S. 1999b High-resolution simulations of freely decaying shallow-water turbulence on a rotating sphere. Il Nuovo Cimento C 22, 813821.
Ingersoll A. P. 1990 Atmospheric dynamics of the outer planets. Science 248, 308315.
Ingersoll A. P., Dowling T. E., Gierasch P. J., Orton G. S., Read P. L., Sánchez-Lavega A., Showman A. P., Simon-Miller A. A. & Vasavada A. R. 2007 Dynamics of Jupiter’s atmosphere. In Jupiter: The Planet, Satellites and Magnetosphere (ed. Bagenal F., Dowling T. E. & McKinnon W. B.), pp. 105128. Cambridge University Press.
Juckes M. 1989 A shallow water model of the winter stratosphere. J. Atmos. Sci. 46, 29342956.
Khouider B., Majda A. J. & Stechmann S. N. 2013 Climate science in the tropics: waves, vortices and PDEs. Nonlinearity 26, R1R68.
Lavoie R. L. 1972 A mesoscale numerical model of lake-effect storms. J. Atmos. Sci. 29, 10251040.
Limaye S. S. 1986 Jupiter: new estimates of the mean zonal flow at the cloud level. Icarus 65, 335352.
Liu J. & Schneider T. 2010 Mechanisms of jet formation on the giant planets. J. Atmos. Sci. 67, 36523672.
Majda A. J. & Klein R. 2003 Systematic multiscale models for the tropics. J. Atmos. Sci. 60, 393408.
Marcus P. S. 1988 Numerical simulation of Jupiter’s great red spot. Nature 331, 693696.
Matsuno T. 1966 Quasi-geostrophic motions in the equatorial area. J. Met. Soc. Japan 44, 2543.
Matsuno T. 1970 Vertical propagation of stationary planetary waves in the winter northern hemisphere. J. Atmos. Sci. 27, 871883.
Matsuno T. 1971 A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 28, 14791494.
McCreary J. P. 1985 Modeling equatorial ocean circulation. Annu. Rev. Fluid Mech. 17, 359409.
McCreary J. P., Fukamachi Y. & Kundu P. K. 1991 A numerical investigation of jets and eddies near an eastern ocean boundary. J. Geophys. Res. 96, 25152534.
McCreary J. P. & Kundu P. K. 1988 A numerical investigation of the Somali current during the Southwest monsoon. J. Mar. Res. 46, 2558.
McCreary J. P. & Yu Z. 1992 Equatorial dynamics in a 2(1/2)-layer model. Prog. Oceanogr. 29, 61132.
McIntyre M. E. 1981 On the ‘wave momentum’ myth. J. Fluid Mech. 106, 331347.
McIntyre M. E. & Norton W. A. 1990 Dissipative wave-mean interactions and the transport of vorticity or potential vorticity. J. Fluid Mech. 212, 403435.
Mofjeld H. O. 1981 An analytic theory on how friction affects free internal waves in the equatorial waveguide. J. Phys. Oceanogr. 11, 15851590.
Obukhov A. M. 1949 On the problem of the geostrophic wind. Izv. Akad. Nauk SSSR Geogr. Geofiz 13, 281306.
Philander S. G. H., Yamagata T. & Pacanowski R. C. 1984 Unstable air–sea interactions in the tropics. J. Atmos. Sci. 41, 604613.
Polvani L. M., Waugh D. W. & Plumb R. A. 1995 On the subtropical edge of the stratospheric surf zone. J. Atmos. Sci. 52, 12881309.
Porco C. C., West R. A., McEwen A., Del Genio A. D., Ingersoll A. P., Thomas P., Squyres S., Dones L., Murray C. D., Johnson T. V. et al. 2003 Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science 299, 15411547.
Rhines P. B. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417443.
Richards A.2015 University of Oxford advanced research computing. Tech. Note, doi:10.5281/zenodo.22558.
Ripa P. 1993 Conservation laws for primitive equations models with inhomogeneous layers. Geophys. Astrophys. Fluid Dyn. 70, 85111.
Ripa P. 1995 On improving a one-layer ocean model with thermodynamics. J. Fluid Mech. 303, 169201.
Ripa P. 1996a Low frequency approximation of a vertically averaged ocean model with thermodynamics. Rev. Mex. Fís. 41, 117135.
Ripa P. 1996b Linear waves in a one-layer ocean model with thermodynamics. J. Geophys. Res. 101, 12331245.
Røed L. P. 1997 Energy diagnostics in a 1(1/2)-layer, nonisopycnic model. J. Phys. Oceanogr. 27, 14721476.
Røed L. P. & Shi X. B. 1999 A numerical study of the dynamics and energetics of cool filaments, jets, and eddies off the Iberian peninsula. J. Geophys. Res. 104, 2981729841.
Saito I. & Ishioka K. 2015 Mechanism for the formation of equatorial superrotation in forced shallow-water turbulence with Newtonian cooling. J. Atmos. Sci. 72, 14661483.
Schneider T. & Liu J. 2009 Formation of jets and equatorial superrotation on Jupiter. J. Atmos. Sci. 66, 579601.
Schopf P. S. & Cane M. A. 1983 On equatorial dynamics, mixed layer physics and sea surface temperature. J. Phys. Oceanogr. 13, 917935.
Schubert W. H., Taft R. K. & Silvers L. G. 2009 Shallow water quasi-geostrophic theory on the sphere. J. Adv. Model. Earth Syst. 1, 2.
Scott R. K. & Polvani L. M. 2007 Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci. 64, 31583176.
Scott R. K. & Polvani L. M. 2008 Equatorial superrotation in shallow atmospheres. Geophys. Res. Lett. 35, L24202.
Shepherd T. G. 1993 A unified theory of available potential energy. Atmos.-Ocean 31, 126.
Showman A. P. 2007 Numerical simulations of forced shallow-water turbulence: effects of moist convection on the large-scale circulation of Jupiter and Saturn. J. Atmos. Sci. 64, 31323157.
Srinivasan K. & Young W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69, 16331656.
Srinivasan K. & Young W. R. 2014 Reynolds stress and eddy diffusivity of 𝛽-plane shear flows. J. Atmos. Sci. 71, 21692185.
Thompson R. O. R. Y. 1971 Why there is an intense Eastward current in the North Atlantic but not in the South Atlantic. J. Phys. Oceanogr. 1, 235237.
Thuburn J. & Lagneau V. 1999 Eulerian mean, contour integral, and finite-amplitude wave activity diagnostics applied to a single-layer model of the winter stratosphere. J. Atmos. Sci. 56, 689710.
Vallis G. K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.
Vasavada A. R. & Showman A. P. 2005 Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68, 19351996.
Verkley W. T. M. 2009 A balanced approximation of the one-layer shallow-water equations on a sphere. J. Atmos. Sci. 66, 17351748.
Walterscheid R. L., Brinkman D. G. & Schubert G. 2000 Wave disturbances from the comet SL–9 impacts into Jupiter’s atmosphere. Icarus 145, 140146.
Warneford E. S.2014 The thermal shallow water equations, their quasi-geostrophic limit, and equatorial super-rotation in Jovian atmospheres. DPhil thesis, University of Oxford, http://ora.ox.ac.uk/objects/uuid:6604fcac-afe6-4abe-8a6f-6a09de4f933f.
Warneford E. S. & Dellar P. J. 2013 The quasi-geostrophic theory of the thermal shallow water equations. J. Fluid Mech. 723, 374403.
Warneford E. S. & Dellar P. J. 2014 Thermal shallow water models of geostrophic turbulence in Jovian atmospheres. Phys. Fluids 26, 016603.
Williams G. P. 1978 Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci. 35, 13991426.
Williams G. P. & Yamagata T. 1984 Geostrophic regimes, intermediate solitary vortices and Jovian eddies. J. Atmos. Sci. 41, 453478.
Yamagata T. & Philander S. 1985 The role of damped equatorial waves in the oceanic response to winds. J. Oceanogr. Soc. Japan 41, 345357.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 111 *
Loading metrics...

Abstract views

Total abstract views: 191 *
Loading metrics...

* Views captured on Cambridge Core between 7th June 2017 - 17th January 2018. This data will be updated every 24 hours.