Skip to main content
×
×
Home

Synthetic jet generation by high-frequency cavitation

  • Milad Mohammadzadeh (a1), Silvestre Roberto Gonzalez-Avila (a1), Kun Liu (a2), Qi Jie Wang (a2) and Claus-Dieter Ohl (a1)...
Abstract

Cavitation bubbles are nucleated at a high repetition rate in water by delivering a pulsed laser through a fibre optic. Continuous high-frequency cavitation drives a stream away from the fibre tip. Using high-speed photography and particle image velocimetry, the stream is characterised as a synthetic jet, generated by trains of vortices induced by non-spherical bubble collapse. At low laser power, the bubbles collapse before the arrival of a subsequent laser pulse. Yet, by increasing the laser power, a system of bubbles is formed which leads to complex bubble–bubble interactions. The synthetic jet is observed regardless of the bubble formation regime, demonstrating the stability of the phenomenon. Synthetic jet generation by repetitive bubble collapse extends the well-studied acoustic streaming from small-amplitude bubble oscillations.

Copyright
Corresponding author
Email address for correspondence: cdohl@ntu.edu.sg
References
Hide All
Apfel, R. E. 1981 Acoustic cavitation prediction. J. Acoust. Soc. Am. 69 (6), 16241633.
Arndt, R. E. A. 1981 Cavitation in fluid machinery and hydraulic structures. Annu. Rev. Fluid Mech. 13 (1), 273326.
Azam, F. I., Karri, B., Ohl, S.-W., Klaseboer, E. & Khoo, B. C. 2013 Dynamics of an oscillating bubble in a narrow gap. Phys. Rev. E 88 (4), 043006.
Barcikowski, S. & Compagnini, G. 2013 Advanced nanoparticle generation and excitation by lasers in liquids. Phys. Chem. Chem. Phys. 15 (9), 30223026.
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19 (1), 99123.
Blake, J. R., Taib, B. B. & Doherty, G. 1986 Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170, 479497.
Blake, J. R., Taib, B. B. & Doherty, G. 1987 Transient cavities near boundaries. Part 2. Free surface. J. Fluid Mech. 181, 197212.
Brennen, C. E. 2013 Cavitation and Bubble Dynamics. Cambridge University Press.
Brujan, E. A., Keen, G. S., Vogel, A. & Blake, J. R. 2002 The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14 (1), 8592.
Brujan, E.-A., Nahen, K., Schmidt, P. & Vogel, A. 2001 Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech. 433, 251281.
Buogo, S. & Cannelli, G. B. 2002 Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model. J. Acoust. Soc. Am. 111 (6), 25942600.
Cleary, S. F. 1977 Laser pulses and the generation of acoustic transients in biological material. In Laser Applications in Medicine and Biology, pp. 175219. Springer.
Coleman, A. J., Saunders, J. E., Crum, L. A. & Dyson, M. 1987 Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med. Biol. 13 (2), 6976.
Coussios, C. C. & Roy, R. A. 2008 Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu. Rev. Fluid Mech. 40, 395420.
Davidson, B. J. & Riley, N. 1971 Cavitation microstreaming. J. Sound Vib. 15 (2), 217233.
Elder, S. A. 1959 Cavitation microstreaming. J. Acoust. Soc. Am. 31 (1), 5464.
Frenz, M., Könz, F., Pratisto, H., Weber, H. P., Silenok, A. S. & Konov, V. I. 1998 Starting mechanisms and dynamics of bubble formation induced by a Ho:yttrium aluminum garnet laser in water. J. Appl. Phys. 84 (11), 59055912.
Gerstman, B. S., Thompson, C. R., Jacques, S. L. & Rogers, M. E. 1995 Laser-induced bubble formation in the retina. In Photonics West’95, pp. 6071. International Society for Optics and Photonics.
Glezer, A. & Amitay, M. 2002 Synthetic jets. Annu. Rev. Fluid Mech. 34 (1), 503529.
Han, B., Köhler, K., Jungnickel, K., Mettin, R., Lauterborn, W. & Vogel, A. 2015 Dynamics of laser-induced bubble pairs. J. Fluid Mech. 771, 706742.
Hashmi, A., Yu, G., Reilly-Collette, M., Heiman, G. & Xu, J. 2012 Oscillating bubbles: a versatile tool for lab on a chip applications. Lab on a Chip 12 (21), 42164227.
Jean, B. & Bende, T. 2003 Mid-IR laser applications in medicine. In Solid-State Mid-Infrared Laser Sources, pp. 530565. Springer.
Kang, H. W., Lee, H., Teichman, J. M., Oh, J., Kim, J. & Welch, A. J. 2006 Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy. Laser Surg. Med. 38 (8), 762772.
Ko, S. H., Lee, S. J. & Kang, K. H. 2009 A synthetic jet produced by electrowetting-driven bubble oscillations in aqueous solution. Appl. Phys. Lett. 94 (19), 194102.
Kodama, T. & Tomita, Y. 2000 Cavitation bubble behavior and bubble–shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics. Appl. Phys. B 70 (1), 139149.
Lauterborn, W. & Vogel, A. 2013 Shock wave emission by laser generated bubbles. In Bubble Dynamics and Shock Waves, pp. 67103. Springer.
Li, F., Gonzalez-Avila, S. R., Nguyen, D. M. & Ohl, C.-D. 2017 Oscillate boiling from microheaters. Phys. Rev. Fluids 2 (1), 014007.
Liu, R. H., Yang, J., Pindera, M. Z., Athavale, M. & Grodzinski, P. 2002 Bubble-induced acoustic micromixing. Lab on a Chip 2 (3), 151157.
Longuet-Higgins, M. S. 1998 Viscous Streaming from an Oscillating Spherical Bubble, vol. 454, pp. 725742. The Royal Society.
Mallinson, S. G., Reizes, J. A. & Hong, G. 2001 An experimental and numerical study of synthetic jet flow. Aeronaut. J. 105 (1043), 4149.
Marmottant, P. & Hilgenfeldt, S. 2003 Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423 (6936), 153156.
Marmottant, P., Raven, J. P., Gardeniers, H. J. G. E., Bomer, J. G. & Hilgenfeldt, S. 2006 Microfluidics with ultrasound-driven bubbles. J. Fluid Mech. 568, 109118.
Mohammadzadeh, M., Chan, W., Gonzalez-Avila, S. R., Liu, K., Wang, Q. J. & Ohl, C.-D. 2016 Bubble formation with a high repetition rate pulsed Tm laser. In Proceedings of The 20th Australasian Fluid Mechanics Conference ISBN: 978-1-74052-377-6 http://people.eng.unimelb.edu.au/imarusic/proceedings/20%20AFMC%20TOC.htm.
Mohammadzadeh, M., Mercado, J. M. & Ohl, C. D. 2015 Bubble dynamics in laser lithotripsy. In Journal of Physics Conference Series, vol. 656, p. 012004. IOP Publishing.
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.
Pratisto, H., Frenz, M., Ith, M., Altermatt, H. J., Jansen, E. D. & Weber, H. P. 1996 Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water. Appl. Opt. 35 (19), 33283337.
Rajaratnam, N. 1976 Turbulent Jets, vol. 5. Elsevier.
Reuter, F., Gonzalez-Avila, S. R., Mettin, R. & Ohl, C.-D. 2017 Flow fields and vortex dynamics of bubbles collapsing near a solid boundary. Phys. Rev. Fluids 2, 064202.
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33 (1), 4365.
Rogers, P. & Neild, A. 2011 Selective particle trapping using an oscillating microbubble. Lab on a Chip 11 (21), 37103715.
Schlichting, H. & Gersten, K. 2017 Boundary-Layer Theory. Springer.
Smith, B. L. & Swift, G. W. 2003 A comparison between synthetic jets and continuous jets. Exp. Fluids 34 (4), 467472.
Tang, Y., Li, X., Yan, Z., Yu, X., Zhang, Y. & Wang, Q. J. 2014 50-W 2-μm nanosecond all-fiber-based thulium-doped fiber amplifier. IEEE J. Sel. Top. Quant. 20 (5), 537543.
Tezel, A. & Mitragotri, S. 2003 Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis. Biophys. J. 85 (6), 35023512.
Thielicke, W. & Stamhuis, E. 2014 PIVLab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2 (1), e30.
Tho, P., Manasseh, R. & Ooi, A. 2007 Cavitation microstreaming patterns in single and multiple bubble systems. J. Fluid Mech. 576, 191233.
Tomita, Y., Sato, K. & Shima, A. 1994 Interaction of two laser-produced cavitation bubbles near boundaries. In Bubble Dynamics and Interface Phenomena, pp. 3345. Springer.
Tong, R. P., Schiffers, W. P., Shaw, S. J., Blake, J. R. & Emmony, D. C. 1999 The role of splashing in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech. 380, 339361.
Vassar, G. J., Chan, K. F., Teichman, J. M. H., Glickman, R. D., Weintraub, S. T., Pfefer, T. J. & Welch, A. J. 1999 Holmium:YAG lithotripsy: photothermal mechanism. J. Endourol. 13 (3), 181190.
Vogel, A., Hentschel, W., Holzfuss, J. & Lauterborn, W. 1986 Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium:YAG lasers. Ophthalmology 93 (10), 12591269.
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.
Vogel, A. & Venugopalan, V. 2003 Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103 (2), 577644.
Yuan, F., Sankin, G. & Zhong, P. 2011 Dynamics of tandem bubble interaction in a microfluidic channel. J. Acoust. Soc. Am. 130 (5), 33393346.
Zhang, S. & Duncan, J. H. 1994 On the nonspherical collapse and rebound of a cavitation bubble. Phys. Fluids 6 (7), 23522362.
Zhang, S., Duncan, J. H. & Chahine, G. L. 1993 The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 257, 147181.
Zwaan, E., Le Gac, S., Tsuji, K. & Ohl, C.-D. 2007 Controlled cavitation in microfluidic systems. Phys. Rev. Lett. 98, 254501.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed