Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 49
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Liu, Han and Xiao, Zuoli 2016. Scale-to-scale energy transfer in mixing flow induced by the Richtmyer-Meshkov instability. Physical Review E, Vol. 93, Issue. 5,


    Mikaelian, Karnig O. 2016. Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability. Physical Review Fluids, Vol. 1, Issue. 3,


    Thornber, B. 2016. Impact of domain size and statistical errors in simulations of homogeneous decaying turbulence and the Richtmyer-Meshkov instability. Physics of Fluids, Vol. 28, Issue. 4, p. 045106.


    Wang, Tao Bai, Jingsong Li, Ping Wang, Bing Du, Lei Tao, Gang and Xiao, Jiaxin 2016. The Growth of Richtmyer-Meshkov Instability under Multiple Impingements. World Journal of Mechanics, Vol. 06, Issue. 04, p. 150.


    Wang, T. Bai, J.S. Li, P. Wang, B. Du, L. and Tao, G. 2016. Large-eddy simulations of the multi-mode Richtmyer–Meshkov instability and turbulent mixing under reshock. High Energy Density Physics, Vol. 19, p. 65.


    Zhou, Ye Cabot, William H. and Thornber, Ben 2016. Asymptotic behavior of the mixed mass in Rayleigh–Taylor and Richtmyer–Meshkov instability induced flows. Physics of Plasmas, Vol. 23, Issue. 5, p. 052712.


    Attal, N. and Ramaprabhu, P. 2015. Numerical investigation of a single-mode chemically reacting Richtmyer-Meshkov instability. Shock Waves, Vol. 25, Issue. 4, p. 307.


    Di Stefano, C. A. Malamud, G. Kuranz, C. C. Klein, S. R. Stoeckl, C. and Drake, R. P. 2015. Richtmyer-Meshkov evolution under steady shock conditions in the high-energy-density regime. Applied Physics Letters, Vol. 106, Issue. 11, p. 114103.


    Di Stefano, C.A. Malamud, G. Kuranz, C.C. Klein, S.R. and Drake, R.P. 2015. Measurement of Richtmyer–Meshkov mode coupling under steady shock conditions and at high energy density. High Energy Density Physics, Vol. 17, p. 263.


    Kokkinakis, I.W. Drikakis, D. Youngs, D.L. and Williams, R.J.R. 2015. Two-equation and multi-fluid turbulence models for Rayleigh–Taylor mixing. International Journal of Heat and Fluid Flow, Vol. 56, p. 233.


    Nelson, Nicholas J. and Grinstein, Fernando F. 2015. Effects of initial condition spectral content on shock-driven turbulent mixing. Physical Review E, Vol. 92, Issue. 1,


    Orlicz, G. C. Balasubramanian, Sridhar Vorobieff, P. and Prestridge, K. P. 2015. Mixing transition in a shocked variable-density flow. Physics of Fluids, Vol. 27, Issue. 11, p. 114102.


    Thornber, B. and Zhou, Y. 2015. Numerical simulations of the two-dimensional multimode Richtmyer-Meshkov instability. Physics of Plasmas, Vol. 22, Issue. 3, p. 032309.


    Thornber, Ben 2015. 22nd AIAA Computational Fluid Dynamics Conference.

    Wang, T. Tao, G. Bai, J.S. Li, P. and Wang, B. 2015. Numerical comparative analysis of Richtmyer–Meshkov instability simulated by different SGS models. Canadian Journal of Physics, Vol. 93, Issue. 5, p. 519.


    Yang, Q. Chang, J. and Bao, W. 2015. Richtmyer-Meshkov Instability Induced Mixing Enhancement in the Scramjet Combustor with a Central Strut. Advances in Mechanical Engineering, Vol. 6, p. 614189.


    Garcia-Uceda Juarez, A. Raimo, A. Shapiro, E. and Thornber, B. 2014. Steady Turbulent Flow Computations Using a Low Mach Fully Compressible Scheme. AIAA Journal, Vol. 52, Issue. 11, p. 2559.


    Likhachev, Oleg A. and Tsiklashvili, Vladimer 2014. Integral constraints in the study of Richtmyer-Meshkov turbulent mixing. Physics of Fluids, Vol. 26, Issue. 10, p. 102101.


    Lombardini, M. Pullin, D. I. and Meiron, D. I. 2014. Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth. Journal of Fluid Mechanics, Vol. 748, p. 85.


    Malamud, G. Leinov, E. Sadot, O. Elbaz, Y. Ben-Dor, G. and Shvarts, D. 2014. Reshocked Richtmyer-Meshkov instability: Numerical study and modeling of random multi-mode experiments. Physics of Fluids, Vol. 26, Issue. 8, p. 084107.


    ×
  • Journal of Fluid Mechanics, Volume 654
  • July 2010, pp. 99-139

The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability†

  • B. THORNBER (a1), D. DRIKAKIS (a1), D. L. YOUNGS (a2) and R. J. R. WILLIAMS (a2)
  • DOI: http://dx.doi.org/10.1017/S0022112010000492
  • Published online: 12 May 2010
Abstract

This paper investigates the influence of different three-dimensional multi-mode initial conditions on the rate of growth of a mixing layer initiated via a Richtmyer–Meshkov instability through a series of well-controlled numerical experiments. Results are presented for large-eddy simulation of narrowband and broadband perturbations at grid resolutions up to 3 × 109 points using two completely different numerical methods, and comparisons are made with theory and experiment. It is shown that the mixing-layer growth is strongly dependent on initial conditions, the narrowband case giving a power-law exponent θ ≈ 0.26 at low Atwood and θ ≈ 0.3 at high Atwood numbers. The broadband case uses a perturbation power spectrum of the form P(k) ∝ k−2 with a proposed theoretical growth rate of θ = 2/3. The numerical results confirm this; however, they highlight the necessity of a very fine grid to capture an appropriately broad range of initial scales. In addition, an analysis of the kinetic energy decay rates, fluctuating kinetic energy spectra, plane-averaged volume fraction profiles and mixing parameters is presented for each case.

Copyright
Corresponding author
Email address for correspondence: b.j.r.thornber@cranfield.ac.uk
Footnotes
Hide All

Contains material ©British Crown Copyright 2009/MoD.

Footnotes
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A. S. Almgren , J. B. Bell , C. A. Rendleman & M. Zingale 2006 Low Mach number modelling of type Ia supernovae. Part I. Hydrodynamics. Astrophys. J. 637, 922936.

P. Amendt , J. D. Colvin , R. E. Tipton , D. E. Hinkel , M. J. Edwards , O. L. Landen , J. D. Ramshaw , L. J. Suter , W. S. Varnum & R. G. Watt 2002 Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: design and analysis. Phys. Plasmas 9 (5), 22212233.

C. W. Barnes , S. H. Batha , A. M. Dunne , G. R. Magelssen , S. Rothman , R. D. Day , N. E. Elliott , D. A. Haynes , R. L. Holmes , J. M. Scott , D. L. Tubbs , D. L. Youngs , T. R. Boehly & P. Jaanimagi 2002 Observation of mix in a compressible plasma in a convergent cylindrical geometry. Phys. Plasmas 9 (11), 44314438.

C. Bogey , N. de Cacqueray & C. Bailly 2009 A shock-capturing methodology based on adaptative spatial filtering for high-order nonlinear computations. J. Comput. Phys. 228, 14471465.

P. R. Chapman & J. W. Jacobs 2006 Experiments on the three-dimensional incompressible Richtmyer–Meshkov instability. Phys. Fluids 18, 074101.

T. T. Clark & Y. Zhou 2006 Growth rate exponents of Richtmyer–Meshkov mixing layers. J. Appl. Mech. 73, 461–268.

R. H. Cohen , W. P. Dannevik , A. M. Dimits , D. E. Eliason , A. A. Mirin , Y. Zhou , D. H. Porter & P. R. Woodward 2002 Three-dimensional simulation of a Richtmyer–Meshkov instability with a two-scale initial perturbation. Phys. Fluids 14 (10), 36923709.



A. W. Cook & Y. Zhou 2002 Energy transfer in Rayleigh–Taylor instability. Phys. Rev. E 66, 026312.

J. P. Dahlburg , D. E. Fyfe , J. H. Gardner , S. W. Haan , S. E. Bodner & G. D. Doolen 1995 Three-dimensional multimode simulations of the ablative Rayleigh–Taylor instability. Phys. Plasmas 2 (6), 24532472.

G. Dimonte , C. E. Frerking & M. Schneider 1995 Richtmyer–Meshkov instability in the turbulent regime. Phys. Rev. Lett. 74, 48554858.

G. Dimonte & M. Schneider 1997 Turbulent Richtmyer–Meshkov instability experiments with strong radiatively driven shocks. Phys. Plasmas 4 (12), 43474357.

G. Dimonte & M. Schneider 2000 Density ratio dependence of Rayleigh–Taylor mixing for sustained and impulsive acceleration histories. Phys. Fluids 12, 304321.

G. Dimonte , D. L. Youngs , A. Dimits , S. Wunsch , C. Garasi , M. J. Andrews , A. C. Calder , P. MacNeice , P. Ricker , S. Weber , M. Marinak , A. Robinson , P. Ramaprabhu , B. Fryxell , K. Olson , R. Rosner , J. Biello , L. Dursi , F. Timmes , H. Tufo , Y.-N. Young & M. Zingale 2004 A comparative study of the turbulent Rayleigh–Taylor instability using high resolution three-dimensional numerical simulations: the alpha-group collaboration. Phys. Fluids 16 (5), 16681693.


D. Drikakis 2003 Advances in turbulent flow computations using high-resolution methods. Prog. Aerosp. Sci. 39, 405424.

D. Drikakis , M. Hahn , A. Mosedale & B. Thornber 2009 Large eddy simulation using high-resolution and high-order methods. Phil. Trans. R. Soc. A 367 (1899), 29852997.

D. Drikakis & S. Tsangaris 1993 On the solution of the compressible Navier–Stokes equations using improved flux vector splitting methods. Appl. Math. Model. 17 (6), 282.

G. Fraley 1986 Rayleigh–Taylor stability for a normal shock wave–density discontinuity interaction. Phys. Fluids 29, 376386.

S. Gauthier & M. Bonnet 1990 A k - ϵ model for turbulent mixing in shock-tube flows induced by Rayleigh–Taylor instability. Phys. Fluids A 2 (9), 16851694.

V. N. Goncharov 2002 Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88 (13), 134502.




M.-J. Huang & A. Leonard 1994 Power-law decay of homogeneous turbulence at low Reynolds numbers. Phys. Fluids 6 (11), 37653775.


K. H. Kim & C. Kim 2005 Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows. Part II. Multi-dimensional limiting process. J. Comput. Phys. 208, 570615.

B. van Leer 1977 Towards the ultimate conservative difference scheme. Part IV. A new approach to numerical convection. J. Comput. Phys. 23, 276299.

M. Lesieur & O. Metais 1996 New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28, 4582.

K. O. Mikaelian 1989 Turbulent mixing generated by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Physica D 36, 343357.

A. Mosedale & D. Drikakis 2007 Assessment of very high-order of accuracy in LES models. J. Fluids Engng 129, 14971503.

D. Oron , L. Arazi , D. Kartoon , A. Rikanati , U. Alon & D. Shvarts 2001 Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws. Phys. Plasmas 8 (6), 28832889.


O. Poujade & M. Peybernes 2010 Growth rate of Rayleigh–Taylor turbulent mixing layers from first principles. Phys. Rev. E 81 (1), 016316.

J. K. Prasad , A. Rasheed , S. Kumar & B. Sturtevant 2000 The late-time development of the Richtmyer–Meshkov instability. Phys. Fluids 12 (8), 21082115.

J. D. Ramshaw 1998 Simple model for linear and nonlinear mixing at unstable fluid interfaces with variable acceleration. Phys. Rev. E 58 (5), 58345840.

R. D. Richtmyer 1960 Taylor instability in shock acceleration of compressible fluids. Comm. Pure Appl. Math. 13, 297319.

R. J. Spiteri & S. J. Ruuth 2002 A class of optimal high-order strong-stability preserving time discretization methods. SIAM J. Numer. Anal. 40 (2), 469491.

B. Thornber & D. Drikakis 2008 Implicit large eddy simulation of a deep cavity using high resolution methods. AIAA J. 46 (10), 26342645.

B. Thornber , A. Mosedale & D. Drikakis 2007 On the implicit large eddy simulation of homogeneous decaying turbulence. J. Comput. Phys. 226, 19021929.

B. Thornber , A. Mosedale , D. Drikakis , D. Youngs & R. Williams 2008 An improved reconstruction method for compressible flows with low Mach number features. J. Comput. Phys. 227, 48734894.

E. F. Toro 1997 Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer.


D. L. Youngs 1991 Three-dimensional numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Phys. Fluids A 3 (5), 13121320.


Q. Zhang & S.-I. Sohn 1997 Nonlinear theory of unstable fluid mixing driven by shock wave. Phys. Fluids 9 (4), 11061124.

Y. Zhou 2001 A scaling analysis of turbulent flows driven by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Fluids 13 (2), 538543.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax