Skip to main content
×
Home
    • Aa
    • Aa

Trajectory and distribution of suspended non-Brownian particles moving past a fixed spherical or cylindrical obstacle

  • Sumedh R. Risbud (a1) and German Drazer (a1)
Abstract
Abstract

We investigate the motion of a suspended non-Brownian sphere past a fixed cylindrical or spherical obstacle in the limit of zero Reynolds number for arbitrary particle–obstacle aspect ratios. We consider both a suspended sphere moving in a quiescent fluid under the action of a uniform force as well as a uniform ambient velocity field driving a freely suspended particle. We determine the distribution of particles around a single obstacle and solve for the individual particle trajectories to comment on the transport of dilute suspensions past an array of fixed obstacles. First, we obtain an expression for the probability density function governing the distribution of a dilute suspension of particles around an isolated obstacle, and we show that it is isotropic. We then present an analytical expression – derived using both Eulerian and Lagrangian approaches – for the minimum particle–obstacle separation attained during the motion, as a function of the incoming impact parameter, i.e. the initial offset between the line of motion far from the obstacle and a parallel line that goes through its centre. Further, we derive the asymptotic behaviour for small initial offsets and show that the minimum separation decays exponentially. Finally we use this analytical expression to define an effective hydrodynamic surface roughness based on the net lateral displacement experienced by a suspended sphere moving past an obstacle.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Z. Adamczyk 1989a Particle deposition from flowing suspensions. Colloids Surf. 39 (1), 137.

Z. Adamczyk 1989b Particle transfer and deposition from flowing colloid suspensions. Colloids Surf. 35 (2), 283308.

Z. Adamczyk & T. G. M. van de Ven 1981 Deposition of Brownian particles onto cylindrical collectors. J. Colloid Interface Sci. 84 (2), 497518.

Y. Almog & H. Brenner 1997 Non-continuum anomalies in the apparent viscosity experienced by a test sphere moving through an otherwise quiescent suspension. Phys. Fluids 9 (1), 1622.

M. Balvin , E. Sohn , T. Iracki , G. Drazer & J. Frechette 2009 Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Phys. Rev. Lett. 103 (7), 078301.




J. Bergenholtz , J. F. Brady & M Vicic 2002 The non-Newtonian rheology of dilute colloidal suspensions. J. Fluid Mech. 456, 239275.

F. Blanc , F. Peters & E. Lemaire 2011 Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions. Phys. Rev. Lett. 107 (20), 208302.

T. Bowman , J. Frechette & G. Drazer 2012 Force driven separation of drops by deterministic lateral displacement. Lab on a Chip 12 (16), 29032908.

J. F. Brady & J. F. Morris 1997 Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348 (1), 103139.

H. Brenner & D. A. Edwards 1993 Macrotransport Processes. Butterworth-Heinemann.

V. N. Burganos , C. A. Paraskeva & A. C. Payatakes 1992 Three-dimensional trajectory analysis and network simulation of deep bed filtration. J. Colloid Interface Sci. 148 (1), 167181.

V. N. Burganos , E. D. Skouras , C. A. Paraskeva & A. C. Payatakes 2001 Simulation of the dynamics of depth filtration of non-Brownian particles. AIChE J. 47 (4), 880894.

Y.-I. Chang , S.-C. Chen & E. Lee 2003 Prediction of Brownian particle deposition in porous media using the constricted tube model. J. Colloid Interface Sci. 266 (1), 4859.

R. G. Cox 1974 The motion of suspended particles almost in contact. Intl J. Multiphase Flow 1 (2), 343371.


T. Dabroś & T. G. M. van de Ven 1992 Surface collisions in a viscous fluid. J. Colloid Interface Sci. 149 (2), 493505.

R. H. Davis 1992 Effects of surface-roughness on a sphere sedimenting through a dilute suspension of neutrally buoyant spheres. Phys. Fluids 4 (12), 26072619.


R. H. Davis , Y. Zhao , K. P. Galvin & H. J. Wilson 2003 Solid–solid contacts due to surface roughness and their effects on suspension behaviour. Phil. Trans. R. Soc. A 361 (1806), 871894.

G. Drazer , J. Koplik , B. Khusid & A. Acrivos 2002 Deterministic and stochastic behaviour of non-Brownian spheres in sheared suspensions. J. Fluid Mech. 460, 307335.


S. L. Goren & M. E. O’Neill 1971 On the hydrodynamic resistance to a particle of a dilute suspension when in the neighbourhood of a large obstacle. Chem. Eng. Sci. 26, 325338.

Y. Gu & D. Li 2002 Deposition of spherical particles onto cylindrical solid surfaces. I. Numerical simulations. J. Colloid Interface Sci. 248 (2), 315328.

J. Herrmann , M. Karweit & G. Drazer 2009 Separation of suspended particles in microfluidic systems by directional locking in periodic fields. Phys. Rev. E 79 (6), 061404.


L. R. Huang , E. C. Cox , R. H. Austin & J. C. Sturm 2004 Continuous particle separation through deterministic lateral displacement. Science 304 (5673), 987990.

M. S. Ingber , S. Feng , A. L. Graham & H. Brenner 2008 The analysis of self-diffusion and migration of rough spheres in nonlinear shear flow using a traction-corrected boundary element method. J. Fluid Mech. 598, 267292.


V. Jegatheesan & S. Vigneswaran 2005 Deep bed filtration: mathematical models and observations. Crit. Rev. Environ. Sci. Technol. 35 (6), 515569.


S. Kim & S. J. Karrila 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.


J. Lee & J. Koplik 1999 Microscopic motion of particles flowing through a porous medium. Phys. Fluids 11 (1), 7687.

S.-Q. Li & J. S. Marshall 2007 Discrete element simulation of micro-particle deposition on a cylindrical fibre in an array. J. Aerosol Sci. 38 (10), 10311046.

Z. Li & G. Drazer 2007 Separation of suspended particles by arrays of obstacles in microfluidic devices. Phys. Rev. Lett. 98 (5), 050602.

M. Luo , F. Sweeney , S. R. Risbud , G. Drazer & J. Frechette 2011 Irreversibility and pinching in deterministic particle separation. Appl. Phys. Lett. 99 (6), 064102.

R. J. Phillips , W. M. Deen & J. F. Brady 1989 Hindered transport of spherical macromolecules in fibrous membranes and gels. AIChE J. 35 (11), 17611769.

R. J. Phillips , W. M. Deen & J. F. Brady 1990 Hindered transport in fibrous membranes and gels: effect of solute size and fibre configuration. J. Colloid Interface Sci. 139 (2), 363373.


J. N. Ryan & M. Elimelech 1996 Colloid mobilization and transport in groundwater. Colloid Surface A 107, 156.

M. Shapiro , I. J. Kettner & H. Brenner 1991 Transport mechanics and collection of submicrometre particles in fibrous filters. J. Aerosol Sci. 22 (6), 707722.

J. R. Smart & D. T. Leighton 1989 Measurement of the hydrodynamic surface roughness of noncolloidal spheres. Phys. Fluids A 1 (1), 5260.

L. A. Spielman 1977 Particle capture from low-speed laminar flows. Annu. Rev. Fluid Mech. 9 (1), 297319.

T. G. M. van de Ven , P. Warszynski , X. Wu & T. Dabroś 1994 Colloidal particle scattering: a new method to measure surface forces. Langmuir 10 (9), 30463056.

T. G. M. van de Ven & X. Wu 1999 Characterizing the surface of latex particles with a microcollider. Colloid Surface A 153, 453458.

M. Whittle , B. S. Murray , E. Dickinson & V. J. Pinfield 2000 Determination of interparticle forces by colloidal particle scattering: a simulation study. J. Colloid Interface Sci. 223 (2), 273284.


X. Wu & T. G. M. van de Ven 1996 Characterization of hairy latex particles with colloidal particle scattering. Langmuir 12 (16), 38593865.

X. Xuan , J. Zhu & C. Church 2010 Particle focusing in microfluidic devices. Microfluid. Nanofluid. 9 (1), 116.

M. Yamada , M. Nakashima & M. Seki 2004 Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Aanl. Chem. 76 (18), 54655471.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords: