Skip to main content
    • Aa
    • Aa

Turbulence decay towards the linearly stable regime of Taylor–Couette flow

  • Rodolfo Ostilla-Mónico (a1), Roberto Verzicco (a1) (a2), Siegfried Grossmann (a3) and Detlef Lohse (a1)

Taylor–Couette (TC) flow is used to probe the hydrodynamical (HD) stability of astrophysical accretion disks. Experimental data on the subcritical stability of TC flow are in conflict about the existence of turbulence (cf. Ji et al. (Nature, vol. 444, 2006, pp. 343–346) and Paoletti et al. (Astron. Astroph., vol. 547, 2012, A64)), with discrepancies attributed to end-plate effects. In this paper we numerically simulate TC flow with axially periodic boundary conditions to explore the existence of subcritical transitions to turbulence when no end plates are present. We start the simulations with a fully turbulent state in the unstable regime and enter the linearly stable regime by suddenly starting a (stabilizing) outer cylinder rotation. The shear Reynolds number of the turbulent initial state is up to $Re_s \lesssim 10^5$ and the radius ratio is $\eta =0.714$. The stabilization causes the system to behave as a damped oscillator and, correspondingly, the turbulence decays. The evolution of the torque and turbulent kinetic energy is analysed and the periodicity and damping of the oscillations are quantified and explained as a function of shear Reynolds number. Though the initially turbulent flow state decays, surprisingly, the system is found to absorb energy during this decay.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

P. J. Armitage 2011 Dynamics of protoplanetary disks. Annu. Rev. Astron. Astrophys. 49, 195236.

M. Avila 2012 Stability and angular-momentum transport of fluid flows between corotating cylinders. Phys. Rev. Lett. 108 (12), 124501.

S. A. Balbus  & J. Hawley 1991 A powerful local shear instability in weakly magnetized disks. Astrophys. J. 376, 214233.

D. Borrero-Echeverry , M. F. Schatz  & R. Tagg 2010 Transient turbulence in Taylor–Couette flow. Phys. Rev. E 81, 025301.

B. Dubrulle , O. Dauchot , F. Daviaud , P. Y. Longaretti , D. Richard  & J. P. Zahn 2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17, 095103.

E. M. Edlund  & H. Ji 2014 Nonlinear stability of laboratory quasi-Keplerian flows. Phys. Rev. E 89, 021004.

B. Gallet , C. R. Doering  & E. A. Spiegel 2010 Destabilizing Taylor–Couette flow with suction. Phys. Fluids 22, 034105.

C. F. Gammie 1996 Layered accretion in T-Tauri disks. Astrophys. J. 457, 355362.

S. Grossmann 2000 The onset of shear flow turbulence. Rev. Mod. Phys. 72, 603618.

S. Grossmann  & D. Lohse 2001 Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 33163319.

S. Grossmann  & D. Lohse 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108.

H. Ji  & S. A. Balbus 2013 Angular momentum transport in astrophysics and in the lab. Phys. Today 66 (8), 2733.

H. Ji , M. Burin , E. Schartman  & J. Goodman 2006 Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444, 343346.

G. Lesur  & P. Y. Longaretti 2005 On the relevance of subcritical hydrodynamic turbulence to accretion disk transport. Astron. Astrophys. 444, 2544.

R. Ostilla-Monico , E. P. van der Poel , R. Verzicco , S. Grossmann  & D. Lohse 2014 Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids 26, 015114.

M. S. Paoletti  & D. P. Lathrop 2011 Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett. 106, 024501.

M. S. Paoletti , D. P. M. van Gils , B. Dubrulle , C. Sun , D. Lohse  & D. P. Lathrop 2012 Angular momentum transport and turbulence in laboratory models of Keplerian flows. Astron. Astrophys. 547, A64.

M. R. Petersen , K. Julien  & G. R. Stewart 2007 Baroclinic vorticity production in protoplanetary disks. I. Vortex formation. Astrophys. J. 658, 12361251.

J. Proudman 1916 On the motion of solids in a liquid possessing vorticity. Proc. R. Soc. Lond. A 92, 408424.

F. Rincon , G. I. Ogilvie  & C. Cossu 2008 On self-sustaining processes in Rayleigh-stable rotating plane Couette flows and subcritical transitions to turbulence in accretion disks. Astron. Astrophys. 463, 817832.

E. Schartman , H. Ji , M. J. Burin  & J. Goodman 2012 Stability of quasi-Keplerian shear flow in a laboratory experiment. Astron. Astrophys. 543, A94.

G. I. Taylor 1917 Motion of solids in fluids when the flow is not irrotational. Proc. R. Soc. Lond. A 93, 92113.

L. N. Trefethen , A. E. Trefethen , S. C. Reddy  & T. A. Driscol 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.

D. P. M. van Gils , S. G. Huisman , G. W. Bruggert , C. Sun  & D. Lohse 2011 Torque scaling in turbulent Taylor–Couette flow with co- and counter-rotating cylinders. Phys. Rev. Lett. 106, 024502.

R. Verzicco  & P. Orlandi 1996 A finite-difference scheme for three-dimensional incompressible flow in cylindrical coordinates. J. Comput. Phys. 123, 402413.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title

Ostilla-Mónico supplementary movie
Movie acompanying figure 2.

 Video (6.0 MB)
6.0 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 35 *
Loading metrics...

Abstract views

Total abstract views: 138 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd June 2017. This data will be updated every 24 hours.