Skip to main content
×
Home
    • Aa
    • Aa

Unsteadily manipulating internal flow barriers

Abstract

Typical flows contain internal flow barriers: specialised time-moving Lagrangian entities which demarcate distinct motions. Examples include the boundary between an oceanic eddy and a nearby jet, the edge of the Antarctic circumpolar vortex or the interface between two fluids which are to be mixed together in an microfluidic assay. The ability to control the locations of these barriers in a user-specified time-varying (unsteady) way can profoundly impact fluid transport between the coherent structures which are separated by the barriers. A condition on the unsteady Eulerian velocity required to achieve this objective is explicitly derived, thereby solving an ‘inverse Lagrangian coherent structure’ problem. This is an important first step in developing flow-barrier control in realistic flows, and in providing a postprocessing tool for observational/experimental velocity data. The excellent accuracy of the method is demonstrated using the Kelvin–Stuart cats-eyes flow and the unsteady double gyre, utilising finite-time Lyapunov exponents.

Copyright
Corresponding author
Email address for correspondence: sanjeevabalasuriya@yahoo.com
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. Allshouse  & T. Peacock 2015a Lagrangian based methods for coherent structure detection. Chaos 25, 097617.

M. Allshouse  & T. Peacock 2015b Refining finite-time Lyapunov exponent ridges and the challenges of classifying them. Chaos 25, 087410.

S. Balasuriya 2011 A tangential displacement theory for locating perturbed saddles and their manifolds. SIAM J. Appl. Dyn. Syst. 10, 11001126.

S. Balasuriya 2012 Explicit invariant manifolds and specialised trajectories in a class of unsteady flows. Phys. Fluids 24, 12710.

S. Balasuriya 2015 Quantifying transport within a two-cell microdroplet induced by circular and sharp channel bends. Phys. Fluids 27, 052005.

S. Balasuriya 2016a Barriers and Transport in Unsteady Flows: a Melnikov Approach. SIAM.

S. Balasuriya 2016b Local stable and unstable manifolds and their control in nonautonomous finite-time flows. J. Nonlinear Sci. 26, 895927.

S. Balasuriya 2016c Meridional and zonal wavenumber dependence in tracer flux in Rossby waves. Fluids 1, 30.

S. Balasuriya  & M. D. Finn 2012 Energy constrained transport maximization across a fluid interface. Phys. Rev. Lett. 108, 244503.

S. Balasuriya , G. Froyland  & N. Santitissadeekorn 2014 Absolute flux optimising curves of flows on a surface. J. Math. Anal. Appl. 409, 119139.

S. Balasuriya , R. Kalampattel  & N. Ouellette 2016 Hyperbolic neighborhoods as organizers of finite-time exponential stretching. J. Fluid Mech. 807, 509545.

S. Balasuriya  & K. Padberg-Gehle 2013 Controlling the unsteady analogue of saddle stagnation points. SIAM J. Appl. Maths 73, 10381057.

D. Beebe , J. Moore , J. Bauer , Q. Yu , R. Liu , C. Davadoss  & B. Jo 2000 Functional hydrogel structures for autonomous flow control inside microfluidic channnels. Nature 404, 588.

S. Boccaletti , C. Grebogi , Y. C. Lai , H. Mancini  & D. Maza 2000 The control of chaos: theory and applications. Phys. Rep. 329, 103197.

E. Boujo , A. Fani  & F. Gallaire 2015 Second-order sensitivity of parallel shear flows and optimal spanwise-periodic flow modifications. J. Fluid Mech. 782, 491514.

A. BozorgMagham , S. Ross  & D. Schmale 2015 Local finite-time Lyapunov exponent, local sampling and probabilistic source and destination regions. Nonlinear Process. Geophys. 22, 663677.

S. Brunton  & B. Noack 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67, 050801.

M. Cheikh  & I. Lakkis 2016 Microfluidic transistors for analog microflows amplification and control. Microfluid Nanofluid 20, 91.

W. A. Coppel 1978 Dichotomies in Stability Theory, Lecture Notes Mathematics, vol. 629. Springer.

L. Cortelezzi , A. Adrover  & M. Giona 2008 Feasibility, efficiency and transportability of short-horizon optimal mixing protocols. J. Fluid Mech. 597, 199231.

F. Fish  & G. Lauder 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38, 193224.

E. Franco , D. Pekarek , J. Peng  & J. Dabiri 2007 Geometry of unsteady fluid transport during fluid structure interactions. J. Fluid Mech. 589, 125145.

P. Frank , J. Schreiter , S. Haefner , G Paschew , A. Voigt  & A. Richter 2016 Integrated microfluidic membrane transistor utilizing chemical information for on-chip flow control. PLoS ONE 11, e0161024.

G. Froyland  & K. Padberg-Gehle 2014 Almost-invariant and finite-time coherent sets: directionality, duration, and diffusion. In Ergodic Theory, Open Dynamics, and Coherent Structures (ed. W. Bahsoun , C. Bose  & G. Froyland ), pp. 171216. Springer.

G. Froyland  & K. Padberg-Gehle 2015 A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data. Chaos 25, 087406.

G. Froyland , N. Santitissadeekorn  & A. Monahan 2010 Transport in time-dependent dynamical systems: finite-time coherent sets. Chaos 20, 043116.

L. Gaultier , B. Djath , J. Verron , J. M. Brankart , P. Brasseur  & A. Melet 2014 Inversion of submesoscale patterns from a high-resolution Solomon sea model: feasibility assessment. J. Geophys. Res. Oceans 119, 45204541.

L. Gaultier , J. Verron , J.-M. Brankart , O. Titaud  & P. Brasseur 2013 On the inversion of submesoscale tracer fields to estimate the surface ocean circulation. J. Mar. Syst. 126, 3342.

O. Glass  & T. Horsin 2010 Approximate Lagrangian controllability for the 2D Euler quations: application to the control of the shape of a vortex patch. J. Math. Pures Appl. 93, 6190.

O. Glass  & T. Horsin 2012 Prescribing the motion of a set of particles in a three-dimensional perfect fluid. SIAM J. Control Optim. 50, 27262742.

G. Haller 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137162.

G. Haller , A. Hadjighasem , M. Farazmand  & F. Hihn 2016 Defining coherent vortices objectively from the vorticity. J. Fluid Mech. 795, 136173.

P. Hassanzadeh , G. Chini  & C. Doering 2014 Wall to wall optimal transport. J. Fluid Mech. 751, 627662.

C. Heckman , I. Schwartz  & M. Hsieh 2015 Toward efficient navigation in uncertain gyre-like flows. Intl J. Robot. Res. 34, 15901603.

C. Ho  & Y. Tai 1998 Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 30, 579612.

L. Ionov , N. Houbenov , A. Sidorenko , M. Stamm  & S. Minko 2006 Smart microfluidic channels. Adv. Funct. Mater. 16, 11531160.

A. Jadhav , B. Yan , R. Luo , L. Wei , Z. Zhen , C. Chen  & P. Shi 2015 Photoresponsive microvalve for remote actuation and flow control in microfluidic devices. Biomicrofluidics 9, 034114.

S.-G. Jeong , J. Kim , S. Jin , K. Park  & C. Lee 2016 Flow control in paper-based microfluidic device for automatic multistep assays: a focused review. Korean J. Chem. Engng 33, 27612770.

R. Karnik , C. Duan , K. Castelino , H. Daiguji  & A. Majumdar 2007 Rectification of ionic current in a nanofluidic device. Nano Lett. 7, 547551.

D. Karrasch , M. Farazmand  & G. Haller 2015 Attraction-based computation of hyperbolic Larangian coherent structures. J. Comput. Dyn. 2, 8393.

J. Kim  & T. Bewley 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383417.

A. Kucala  & S. Biringen 2014 Spatial simulation of channel flow instability and control. J. Fluid Mech. 738, 105123.

P. Lei , J. Zhang , K. Li  & D. Wei 2015 Study on the transports in transient flow over impulsively started circular cylinder using Lagrangian coherent structures. Commun. Nonlinear Sci. Numer. Simul. 22, 953963.

Z. Lin , J.-L. Thiffeault  & C. R. Doering 2011 Optimal stirring strategies for passive scalar mixing. J. Fluid Mech. 675, 465476.

T. Ma  & E. Bollt 2014 Differential geometry perspective of shape coherence and curvature evolution by finite-time nonhyperbolic splitting. SIAM J. Appl. Dyn. Syst. 13, 11061136.

K. Mallory , M. Hsieh , E. Forgoston  & I. Schwartz 2013 Distributed allocation of mobile sensing swarms in gyre flows. Nonlinear Process. Geophys. 20, 657668.

A. M. Mancho , S. Wiggins , J. Curbelo  & C. Mendoza 2013 Lagrangian descriptors: a method for revealing phase space structures of general time dependent dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 18, 35303557.

G. Mathew , I. Mezić , S. Grivopoulos , U. Vaidya  & L. Petzold 2007 Optimal control of mixing in Stokes fluid flow. J. Fluid Mech. 580, 261281.

I. Mezić , S. Loire , V. Fonoberov  & P. Hogan 2010 A new mixing diagnostic and Gulf oil spill movement. Science 330, 486489.

M. Michini , M. Hsieh , E. Forgoston  & I. Schwartz 2014 Robotic tracking of coherent structures in flows. IEEE Trans. Robot. 30, 595603.

R. Mundel , E. Fredj , H. Gildor  & V. Rom-Kedar 2014 New Lagrangian diagnostics for characterizing fluid flow mixing. Phys. Fluids 26, 126602.

D. Oettinger  & G. Haller 2016 An autonomous dynamical system captures all LCSs in three-dimensional unsteady flows. Chaos 26, 103111.

K. Onu , F. Huhn  & G. Haller 2015 LCS tool: a computational platform for Lagrangian coherent structures. J. Comput. Sci. 7, 2636.

E. Ott , C. Grebogi  & J. A. Yorke 1990 Controlling chaos. Phys. Rev. Lett. 64, 11961199.

N. Ouellette , C. Hogg  & Y. Liao 2016 Correlating Lagrangian structures with forcing in two-dimensional flow. Phys. Fluids 28, 015105.

T. Peacock  & G. Haller 2013 Lagrangian coherent structures: the hidden skeleton of fluid flow. Phys. Today 66, 4147.

K. Pyragas 1992 Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170 (6), 421428.

S. Raben , S. Ross  & P. Vlachos 2014 Experimental determination of three dimensional finite time Lyapunov exponents in multi-component flows. Exp. Fluids 55, 1824.

V. Rom-Kedar , A. Leonard  & S. Wiggins 1990 An analytical study of transport, mixing and chaos in an unsteady vortical flow. J. Fluid Mech. 214, 347394.

R. Samelson 2013 Lagrangian motion, coherent structures, and lines of persistent material strain. Annu. Rev. Mar. Sci. 5, 137163.

B. Sandstede , S. Balasuriya , C. K. R. T. Jones  & P. D. Miller 2000 Melnikov theory for finite-time vector fields. Nonlinearity 13, 13571377.

K. Schlueter-Kuck  & J. Dabiri 2017 Coherent structure coloring: identification of coherent structures from sparse data using graph theory. J. Fluid Mech. 811, 468486.

C. Senatore  & S. Ross 2008 Fuel-efficient navigation in complex flows. In Proceedings of 2008 American Control Conference, pp. 12441248; doi:10.1109/ACC.2008.4586663.

S. Shadden 2011 Lagrangian coherent structures. In Transport and Mixing in Laminar Flows: From Microfluidics to Ocean Currents (ed. R. Grigoriev ), Wiley.

A. Sharma  & B. McKeon 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.

S. Sinha , U. Vaidya  & R. Rajaram 2016 Operator theoretic framework for optimal placement of sensors and actuators for control of nonequilibrium dynamics. J. Math. Anal. Appl. 440, 750772.

J. Stuart 1967 On finite-amplitude oscillations in laminar mixing layers. J. Fluid Mech. 29, 417440.

P. Tallapragada  & S. Ross 2013 A set oriented definition of finite-time Lyapunov exponents and coherent sets. Commun. Nonlinear Sci. Numer. Simul. 18, 11061126.

S. Wiggins 1992 Chaotic Transport in Dynamical Systems. Springer.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 3
Total number of PDF views: 114 *
Loading metrics...

Abstract views

Total abstract views: 222 *
Loading metrics...

* Views captured on Cambridge Core between 4th April 2017 - 20th September 2017. This data will be updated every 24 hours.