Skip to main content

Unsteady swimming of small organisms

  • S. Wang (a1) and A. M. Ardekani (a1)

Small planktonic organisms ubiquitously display unsteady or impulsive motion to attack a prey or escape a predator in natural environments. Despite this, the role of unsteady forces such as history and added mass forces on the low-Reynolds-number propulsion of small organisms, e.g. Paramecium, is poorly understood. In this paper, we derive the fundamental equation of motion for an organism swimming by means of the surface distortion in a non-uniform background flow field at a low-Reynolds-number regime. We show that the history and added mass forces are important as the product of Reynolds number and Strouhal number increases above unity. Our results for an unsteady squirmer show that unsteady inertial effects can lead to a non-zero mean velocity for the cases with zero streaming parameters, which have zero mean velocity in the absence of inertia.

Corresponding author
Email address for correspondence:
Hide All
1. van Aartrijk M. & Clercx H. J. H. 2010 Vertical dispersion of light inertial particles in stably stratified turbulence: the influence of the Basset force. Phys. Fluids 22 (1), 013301.
2. Alexander G. P. & Yeomans J. M. 2010 Hydrodynamic interactions at low Reynolds number. Exp. Mech. 50 (9), 12831292.
3. Ardekani A. M., Joseph D. D., Dunn-Rankin D. & Rangel R. H. 2009 Particle–wall collision in a viscoelastic fluid. J. Fluid Mech. 633, 475483.
4. Ardekani A. M. & Rangel R. H. 2006 Unsteady motion of two solid spheres in Stokes flow. Phys. Fluids 18, 103306.
5. Arminski L. & Weinbaum S. 1979 Effect of waveform and duration of impulse on the solution to the Basset–Langevin equation. Phys. Fluids 22 (3), 404411.
6. Basset A. B. 1888 Treatise on Hydrodynamics, vol. 2, p. 285. Deighton Bell, chap. 22.
7. Blake J. R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46, 199208.
8. Boussinesq J. 1885 Sur la resistance qu’oppose un liquide indefini en repos. C. R. Acad. Sci. Paris 100, 935937.
9. Brennen C 1974 An oscillating-boundary-layer theory for ciliary propulsion. J. Fluid Mech. 65 (4), 799824.
10. Burgers J. M. 1938 2nd Report on Viscosity and Plasticity, vol. 16. Amsterdam Academy of Sciences, Nordemann Publishing Co, chap. 3.
11. Daniel T. L. 1984 Unsteady aspects of aquatic locomotion. Am. Zool. 24, 121134.
12. Doostmohammadi A., Stocker R. & Ardekani A. M. 2012 Swimming at pycnoclines. Proc. Natl Acad. Sci. USA 109, 38563861.
13. Drescher K., Leptos K., Tuval I., Ishikawa T., Pedley T. J. & Goldstein R. E. 2009 Dancing volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102 (16), 168101.
14. Gatignol R. 1983 The Faxen formulae for a rigid particle in an unsteady non-uniform Stokes flow. J. Méc. Théor. Appl. 2, 143160.
15. Giacché D. & Ishikawa T. 2010 Hydrodynamic interaction of two unsteady model microorganisms. J. Theor. Biol. 267 (2), 252263.
16. Guasto J. S., Johnson K. A. & Gollub J. P. 2010 Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105 (18), 168102.
17. Hamel A., Fisch C., Combettes L., Dupuis-Williams P. & Baroud C. N. 2011 Transitions between three swimming gaits in Paramecium escape. Proc. Natl Acad. Sci. USA 108, 72907295.
18. Ishikawa T., Simmonds M. P. & Pedley T. J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.
19. Jakobsen H. 2001 Escape response of planktonic protists to fluid mechanical signals. Mar. Ecol. Prog. Ser. 214, 6778.
20. Jiang H. & Kiørboe T. 2011 The fluid dynamics of swimming by jumping in copepods. J. R. Soc. Interface 8, 10901103.
21. Lauga E. 2011 Emergency cell swimming. Proc. Natl Acad. Sci. USA 108, 76557656.
22. Lighthill M. J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Maths 5, 109118.
23. Lin Z., Thiffeault J. L. & Childress S. 2011 Stirring by squirmers. J. Fluid Mech. 669, 167177.
24. Lovalenti P. M. & Brady J. F. 1993 The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech. 256, 561605.
25. Magar V. & Pedley T. J. 2005 Average nutrient uptake by a self-propelled unsteady squirmer. J. Fluid Mech. 539, 93112.
26. Maxey M. R. & Riley J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26 (4), 883889.
27. Mei R. & Adrian R. J. 1992 Flow past a sphere with an oscillation in the free stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 323341.
28. Najafi A. & Golestanian R. 2004 Simple swimmer at low Reynolds number: three linked spheres. Phys. Rev. E 69 (6, Part 1), 062901.
29. Oseen C. W. 1927 Hydrodynamik, p. 132. Akademische Verlagsgesellschaft.
30. Pooley C. M., Alexander G. P. & Yeomans J. M. 2007 Hydrodynamic interaction between two swimmers at low Reynolds number. Phys. Rev. Lett. 99 (22).
31. Purcell E. M. 1977 Life at low Reynolds number. Am. J. Phys. 45, 311.
32. Stone H. A. & Samuel A. D. T. 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. 77 (19), 41024104.
33. Zhu L., Do-Quang M., Lauga E. & Brandt L. 2011 Locomotion by tangential deformation in a polymeric fluid. Phys. Rev. E 83 (1), 011901.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 82 *
Loading metrics...

Abstract views

Total abstract views: 242 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.