Skip to main content Accessibility help
×
×
Home

Viscous fingering phenomena in the early stage of polymer membrane formation

  • Manuel Hopp-Hirschler (a1), Mostafa Safdari Shadloo (a2) and Ulrich Nieken (a1)

Abstract

Currently, the most important preparation process for porous polymer membranes is the phase inversion process. While applied for several decades in industry, the mechanism that leads to diverse morphology is not fully understood today. In this work, we present time resolved experiments using light microscopy that indicate viscous fingering during the early stage of pore formation in porous polymer membranes. Numerical simulations using the smoothed particle hydrodynamics method are also performed based on Cahn–Hilliard and Navier–Stokes equations to investigate the formation of viscous fingers in miscible and immiscible systems. The comparison of pore formation characteristics in the experiment and simulation shows that immiscible viscous fingering is present; however, it is only relevant in specific preparation set-ups similar to Hele-Shaw cells. In experiments, we also observe the formation of Liesegang rings. Enabling diffusive mass transport across the immiscible interface leads to Liesegang rings in the simulation. We conclude that further investigations of Liesegang pattern as a relevant mechanism in the formation of morphology in porous polymer membranes are necessary.

Copyright

Corresponding author

Email address for correspondence: manuel.hopp@icvt.uni-stuttgart.de

References

Hide All
Adami, S., Hu, X. Y. & Adams, N. A. 2010 A new surface-tension formulation for multi-phase SPH using a reproducing devergence approximation. J. Comput. Phys. 229, 20115021.
Ambrosone, L., Errico, G. D., Sartorio, R. & Vitagliano, V. 1995 Analysis of velocity cross-correlation and preferential solvation for the system n-methylpyrrolidone-water at 20 °C. J. Chem. Soc. Faraday Trans. 91 (9), 13391344.
Balashova, I. M., Danner, R. P., Puri, P. S. & Duda, J. L. 2001 Solubility and diffusivity of solvents and nonsolvents in polysulfone and polyetherimide. Ind. Engng Chem. Res. 40, 30583064.
Bensimon, D., Kadanoff, L. P., Liang, S., Shraiman, B. I. & Tang, C. 1986 Viscous flows in two dimensions. Rev. Mod. Phys. 58, 977999.
Bonet, J. & Lok, T.-S. L. 1999 Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput. Meth. Appl. Mech. Engng 180, 97115.
Boom, M. R.1992 Membrane formation by immersion precipitation: the role of a polymeric additive. PhD thesis, University of Enschede.
Casademunt, J. 2004 Viscous fingering as a paradigm of interfacial pattern formation: recent results and new challenges. Chaos 14 (3), 809824.
Casademunt, J. & Magdaleno, F. X. 2000 Dynamics and selection of fingering patterns. Recent developments in the Saffman–Taylor problem. Phys. Rep. 337 (12), 135.
Chorin, A. J. 1968 Numerical solution of the Navier–Stokes equations. Maths Comput. 22, 745762.
Chuoke, R. L., van Meurs, P. & van der Poel, C. 1959 The instability of slow, immiscible, viscous liquid–liquid displacements in permeable media. Trans. AIME 216, 233268.
Colagrossi, A. & Landrini, M. 2003 Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448475.
Couder, Y. 2000 Perspectives in Fluid Dynamics. Cambridge University Press.
Cueto-Felgueroso, L. & Juanes, R. 2014 A phase-field model of two-phase Hele-Shaw flow. J. Fluid Mech. 758, 522552.
Cummins, S. J. & Rudman, M. 1999 An SPH projection method. J. Comput. Phys. 152, 584607.
Degregoria, A. J. & Schwartz, L. W. 1986 A boundary-integral method for two-phase displacement in Hele-Shaw cells. J. Fluid Mech. 164, 383400.
Espanol, P. & Revenga, M. 2003 Smoothed dissipative particle dynamics. Phys. Rev. E 67, 026705.
Euler, L. 1768 Institutiones Calculi Integralis. Acad. Imp. Reprinted in OO.
Fatehi, R., Shadloo, M. S. & Manzari, M. T. 2014 Numerical investigation of two-phase secondary Kelvin–Helmholtz instability. Proc. Inst. Mech. Engrs, C 228 (11), 19131924.
Flory, P. J. 1942 Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 5161.
Foard, E. M. & Wagner, A. J. 2012 Survey of morphologies formed in the wake of an enslaved phase-separation front in two dimensions. Phys. Rev. E 85, 011501.
Frommer, M. A. & Messalem, R. M. 1973 Mechanism of membrane formation. VI. Convective flows and large void formation during membrane precipitation. Ind. Engng Chem. Prod. Res. Dev. 12 (4), 328333.
Gingold, R. A. & Monaghan, J. J. 1977 Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375389.
Grenier, N., Antuono, M., Colagrossi, A., Le Touzé, D. & Alessandrini, B. 2009 An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. J. Comput. Phys. 228, 83808393.
Hejazi, S. H., Trevelyan, P. M. J., Azaiez, J. & de Wit, A. 2010 Viscous fingering of a miscible reactive a + b → c interface: a linear stability analysis. J. Fluid Mech. 652, 501528.
Hele-Shaw, H. S. 1898 The flow of water. Nature 58, 3336.
Hill, S. 1952 Channeling in packed columns. Chem. Engng Sci. 1 (6), 247253.
Hirschler, M., Huber, M., Säckel, W., Kunz, P. & Nieken, U. 2014 An application of the Cahn–Hilliard approach to smoothed particle hydrodynamics. Math. Problems Engng 2014, 694894.
Hirschler, M., Keller, F., Huber, M., Säckel, W. & Nieken, U. 2013 Ein gitterfreies berechnungsverfahren zur simulation von koaleszenz in mehrphasensystemen. Chem. Ing. Techn. 85 (7), 10991106.
Hirschler, M., Kunz, P., Huber, M., Hahn, F. & Nieken, U. 2016a Open boundary conditions for ISPH and their application to micro-flow. J. Comput. Phys. 307, 614633.
Hirschler, M., Säckel, W. & Nieken, U. 2016b On Maxwell–Stefan diffusion in smoothed particle hydrodynamics. Intl J. Heat Mass Transfer 103, 548554.
Homsy, G. M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19 (1), 271311.
Hu, X. Y. & Adams, N. A. 2006 A multi-phase SPH method for macroscopic and mesoscopic flows. J. Comput. Phys. 213, 844861.
Huggins, M. L. 1942 Some properties of solutions of long-chain compounds. J. Phys. Chem. 46, 151158.
Keller, F.2015 Simulation of the morphogenesis of open-porous materials. PhD thesis, University of Stuttgart.
Kimmerle, K. & Strathmann, H. 1990 Analysis of the structure-determining process of phase inversion membranes. Desalination 79, 283302.
Koenhen, D. M., Mulder, M. H. V. & Smolders, C. A. 1977 Phase separation phenomena during the formation of asymmetric membranes. J. Appl. Polym. Sci. 21 (1), 199215.
Kools, W. F. C.1998 Membrane formation by phase inversion in multicomponent polymer systems. Habilitation, Universität Twente.
Kunz, P., Hirschler, M., Huber, M. & Nieken, U. 2016 Inflow/outflow with Dirichlet boundary conditions for pressure in ISPH. J. Comput. Phys. 326, 171187.
Landau, L. D. & Lifshitz, E. M. 1987 Course of Theoretical Physics: Fluid Dynamics, 2nd edn, vol. 6. Elsevier.
Landrini, M., Colagrossi, A., Greco, M. & Tulin, M. P. 2007 Gridless simulations of splashing processes and near-shore bore propagation. J. Fluid Mech. 591, 183213.
Le Touzé, D., Oger, G. & Alessandrini, B. 2008 Smoothed particle hydrodynamics simulation of fast ship flows. In Proc. 27th Symposium on Naval Hydrodynamics. US Office of Naval Research.
Liu, G. R. & Liu, M. B. 2003 Smoothed Particle Hydrodynamics. A Meshfree Particle Method. World Scientific.
Liu, M. B. & Liu, G. R. 2010 Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Meth. Engng 17, 2576.
Lucy, L. B. 1977 A numerical approach to the testing of the fission hypothesis. Astronom. J. 82, 10131024.
Maher, J. V. 1985 Development of viscous fingering patterns. Phys. Rev. Lett. 54, 14981501.
Matz, R. 1972 The structure of cellulose acetate membranes. II. The physical and transport characteristics of the porous layer of anisotropic membranes. Desalination 11 (2), 207215.
Meiburg, E. & Homsy, G. M. 1988 Nonlinear unstable viscous fingers in Hele-Shaw flows. II. Numerical simulation. Phys. Fluids 31 (3), 429439.
Monaghan, J. J. 1992 Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543574.
Monaghan, J. J. 1994 Simulating free surface flows with SPH. J. Comput. Phys. 110, 399406.
Monaghan, J. J. 2005 Smoothed particle hydrodynamics. Rep. Prog. Phys. 68 (8), 17031759.
Morris, J. P., Fox, P. J. & Zhu, Y. 1997 Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214226.
Park, C.-W. & Homsy, G. M. 1984 Two-phase displacement in Hele-Shaw cells: theory. J. Fluid Mech. 139, 291308.
Pramanik, S. & Mishra, M. 2015 Effect of Péclet number on miscible rectilinear displacement in a Hele-Shaw cell. Phys. Rev. E 91, 033006.
Price, D. J. 2008 Modelling discontinuities and Kelvin–Helmholtz instabilities in SPH. J. Comput. Phys. 227, 1004010057.
Rahmat, A., Tofighi, N., Shadloo, M. S. & Yildiz, M. 2014 Numerical simulation of wall bounded and electrically excited Rayleigh–Taylor instability using incompressible smoothed particle hydrodynamics. Colloids Surf. A 460, 6070.
Rahmat, A., Tofighi, N. & Yildiz, M. 2018 A numerical study of Rayleigh–Taylor instability for various Atwood numbers using ISPH method. Prog. Comput. Fluid Dyn. 18 (5), 267.
Ren, J., Li, Z. & Wong, F.-S. 2004 Membrane structure control of BTDA-TDI/MDI (P84) co-polyimide asymmetric membranes by wet-phase inversion process. J. Membr. Sci. 241, 305314.
Reuvers, A. J. & Smolders, C. A. 1987 Formation of membranes by means of immersion precipitation. Part II. The mechanism of formation of membranes prepared from the system cellulose acetate–acetone–water. J. Membr. Sci. 34, 6786.
Saffman, P. G. & Taylor, G. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245 (1242), 312329.
Shadloo, M. S., Oger, G. & Le Touzé, D. 2016 Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput. Fluids 136, 1134.
Shadloo, M. S., Rahmat, A. & Yildiz, M. 2013 A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant Newtonian fluid. Comput. Mech. 52 (3), 693707.
Shadloo, M. S. & Yildiz, M. 2011 Numerical modeling of Kelvin–Helmholtz instability using smoothed particle hydrodynamics. Intl J. Numer. Meth. Engng 87 (10), 9881006.
Shadloo, M. S., Zainali, A., Sadek, S. H. & Yildiz, M. 2011 Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput. Meth. Appl. Mech. Engng 200 (9), 10081020.
Shadloo, M. S., Zainali, A. & Yildiz, M. 2012a Simulation of single mode Rayleigh–Taylor instability by SPH method. Comput. Mech. 51 (5), 699715.
Shadloo, M. S., Zainali, A., Yildiz, M. & Suleman, A. 2012b A robust weakly compressible SPH method and its comparison with an incompressible SPH. Intl J. Numer. Meth. Engng 89, 939956.
Shepard, D. 1968 A two dimensional function for irregulary spaced data. In Proceedings of ACM National Conference, pp. 517524. ACM.
Smolders, C. A., Reuvers, A. J., Boom, R. M. & Wienk, I. M. 1992 Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J. Membr. Sci. 73, 259275.
Strathmann, H. 2011 Introduction to Membrane Science and Technology, 1st edn. Wiley-VCH.
Strathmann, H., Kock, K. & Amar, P. 1975 The formation mechanism of asymmetric membranes. Desalination 16, 179203.
Szewc, K., Pozorski, J. & Minier, J.-P. 2012 Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method. Intl J. Numer. Meth. Engng 92, 343369.
Tan, C. T. & Homsy, G. M. 1988 Simulation of nonlinear viscous fingering in miscible displacement. Phys. Fluids 31 (6), 13301338.
Tanveer, S. 2000 Surprises in viscous fingering. J. Fluid Mech. 409, 273308.
Tartakovsky, A. M. & Meakin, P. 2005 A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor instability. J. Comput. Phys. 207, 610624.
Tryggvason, G. & Aref, H. 1983 Numerical experiments on Hele-Shaw flow with a sharp interface. J. Fluid Mech. 136, 130.
Violeau, D. 2012 Fluid Mechanics and the SPH Method. Oxford University Press.
Wendland, H. 1995 Piecewise polynominal, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389396.
van de Witte, P., Dijkstra, P. J., van den Berg, J. W. A. & Feijen, J. 1996 Phase separation processes in polymer solutions in relation to membrane formation. J. Membr. Sci. 117, 131.
Xu, R., Stansby, P. & Laurence, D. 2009 Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 228, 67036725.
Yu, L., Yang, F. & Xiang, M. 2014 Phase separation in a PSF/DMF/water system: a proposed mechanism for macrovoid formation. RSC Adv. 4, 4239142402.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed