Skip to main content
×
Home
    • Aa
    • Aa

Water wave attenuation due to opposing wind

  • WILLIAM L. PEIRSON (a1), ANDREW W. GARCIA (a2) and STEVEN E. PELLS (a1)
Abstract

A laboratory investigation of the attenuation of mechanically generated waves by an opposing wind has been completed. Wave attenuation was quantified by measurements of the decline in surface variance. These measurements show higher effective levels of monochromatic wave attenuation than predicted by air-side measurements: approximately an order of magnitude higher than measurements by Young & Sobey (1985) and, a factor of 3 higher than those of Donelan (1999) for waves in a JONSWAP spectrum. Furthermore, they show that theoretical estimates currently underestimate the attenuation rates by a factor of at least 3. This study has shown that the magnitude of wave attenuation rates due to opposing winds is approximately 2.5 times greater than the magnitude of wave growth rates for comparable wind forcing. At high wave steepnesses, detailed analysis suggests that air-side processes alone are not sufficient to induce the observed levels of attenuation. Rather, it appears that energy fluxes from the wave field due to the interaction between the wave-induced currents and other subsurface motions play a significant role once the mean wave steepness exceeds a critical value. A systematic relationship between the energy flux from the wave field and mean wave steepness was observed. The combination of opposing wind and wind-induced water-side motions is far more effective in attenuating waves than has previously been envisaged.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 45 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 30th May 2017. This data will be updated every 24 hours.