Skip to main content
    • Aa
    • Aa

A plot-scale study of firn stratigraphy at Lomonosovfonna, Svalbard, using ice cores, borehole video and GPR surveys in 2012–14


Spatial heterogeneity of snow and firn properties on glaciers introduces uncertainty in interpretation of point and profile observations and complicates modelling of meltwater percolation and runoff. Here we present a study of the temporal and spatial dynamics of firn density and stratigraphy at the plot-scale (≈10 m × 10 m × 10 m) repeated annually during 2012–14 at the Lomonosovfonna icefield, Svalbard. Results from cores, video inspections in boreholes and radar grid surveys are compared. Ice layers 0.1–50 cm thick comprised ≈8% of the borehole length. Most of them are 1–3 cm thick and could not be traced between boreholes separated by 3 m. Large lateral variability of firn structure affects representativeness of observations in single holes and calls for repeated studies in multiple points to derive a representative stratigraphy signal. Radar reflections are poorly correlated with ice layers in individual boreholes. However, the match between the high amplitude peaks in the grid-averaged radar signal and horizons of preferential ice layer formation revealed by averaging the video surveys over multiple boreholes is higher. These horizons are interpreted as buried firn layers previously exposed to melt-freeze or wind-driven densification and several of them are consistently recovered throughout three field campaigns.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A plot-scale study of firn stratigraphy at Lomonosovfonna, Svalbard, using ice cores, borehole video and GPR surveys in 2012–14
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      A plot-scale study of firn stratigraphy at Lomonosovfonna, Svalbard, using ice cores, borehole video and GPR surveys in 2012–14
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      A plot-scale study of firn stratigraphy at Lomonosovfonna, Svalbard, using ice cores, borehole video and GPR surveys in 2012–14
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.
Corresponding author
Correspondence: Sergey Marchenko <>
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M Albert , G Koh and F Perron (1999) Radar investigations of melt pathways in a natural snowpack. Hydrol. Process., 13(18), 29913000, (doi: 10.1002/(SICI)1099-1085(19991230)13:18<2991::AID-HYP10>3.0.CO;2-5)

SA Arcone (2009) Glaciers and Ice Sheets. In HM Jol ed. Ground penetrating radar theory and applications, chapter 12, Elsevier, Amsterdam, 361392, (doi: 10.1016/B978-0-444-53348-7.00012-0)

P Bartelt and M Lehning (2002) A physical SNOWPACK model for the Swiss avalanche warning: part I: numerical model. Cold Reg. Sci. Technol., 35(3), 123145, (doi: 10.1016/S0165-232X(02)00074-5)

C Bell and 7 others (2008) Spatial and temporal variability in the snowpack of a High Arctic ice cap: implications for mass-change measurements. Ann. Glaciol., 48(1), 159170 (doi: 10.3189/172756408784700725)

J Brown , J Harper , WT Pfeffer , N Humphrey and J Bradford (2011) High-resolution study of layering within the percolation and soaked facies of the Greenland ice sheet. Ann. Glaciol., 52(59), 3542 (doi: 10.3189/172756411799096286)

FMA Campbell , PW Nienow and RS Purves (2006) Role of the supraglacial snowpack in mediating meltwater delivery to the glacier system as inferred from dye tracer investigations. Hydrol. Process., 20(4), 969985, (doi: 10.1002/hyp.6115)

K Christianson , J Kohler , RB Alley , C Nuth and WJJ van Pelt (2015) Dynamic perennial firn aquifer on an Arctic glacier. Geophys. Res. Lett., 42(5), 14181426, (doi: 10.1002/2014GL062806), 2014GL062806)

SC Colbeck (1982) An overview of seasonal snow metamorphism. Rev. Geophys., 20(1), 4561, (doi: 10.1029/RG020i001p00045)

T Dunse and 5 others (2008) Characteristics and small-scale variability of GPR signals and their relation to snow accumulation in Greenland's percolation zone. J. Glaciol., 54(185), 333342 (doi: 10.3189/002214308784886207)

G Evangelidis and E Psarakis (2008) Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans. Pattern Anal. Mach. Intell., 30(10), 18581865, (doi: 10.1109/TPAMI.2008.113)

RR Forster , CH Davis , TW Rand and RK Moore (1991) Snow-stratification investigation on an Antarctic ice stream with an X-band radar system. J. Glaciol., 37(127), 323325

RR Forster and 12 others (2014) Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nat. Geosci., 7(2), 9598, (doi: 10.1038/ngeo2043)

G Gascon , M Sharp , D Burgess , P Bezeau and ABG Bush (2013) Changes in accumulation-area firn stratigraphy and meltwater flow during a period of climate warming: Devon Ice Cap, Nunavut, Canada. J. Geophys. Res.: Earth Surf., 118(4), 23802391, (doi: 10.1002/2013JF002838), 2013JF002838

G Gascon and 6 others (2014) How well is firn densification represented by a physically based multilayer model? Model evaluation for Devon Ice Cap, Nunavut, Canada. J. Glaciol., 60(222), 694704 (doi: 10.3189/2014JoG13J209)

SH Gray (1992) Frequency-selective design of the Kirchhoff migration operator. Geophys. Prospect., 40(5), 565571, (doi: 10.1111/j.1365-2478.1992.tb00541.x)

JG Hagedoorn (1954) A process of seismic reflection interpretation. Geophys. Prospect., 2(2), 85127, (doi: 10.1111/j.1365-2478.1954.tb01281.x)

J Harper , N Humphrey , WT Pfeffer , J Brown and X Fettweis (2012) Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature, 491(7423), 240243, (doi: 10.1038/nature11566), 10.1038/nature11566

RL Hawley and ED Waddington (2011) In situ measurements of firn compaction profiles using borehole optical stratigraphy. J. Glaciol., 57(202), 289294, (doi: 10.3189/002214311796405889)

B Hubbard , S Roberson , D Samyn and D Merton-Lyn (2008) Digital optical televiewing of ice boreholes. J. Glaciol., 54(188), 823830 (doi: 10.3189/002214308787779988)

TH Illangasekare , RJ Walter , MF Meier and WT Pfeffer (1990) Modeling of meltwater infiltration in subfreezing snow. Water Resour. Res., 26(5), 10011012, (doi: 10.1029/WR026i005p01001)

E Isaksson and 14 others (2001) A new ice-core record from Lomonosovfonna, Svalbard: viewing the 1920-97 data in relation to present climate and environmental conditions. J. Glaciol., 47(157), 335345, (doi: 10.3189/172756501781832313)

T Katsushima , T Kumakura and Y Takeuchi (2009) A multiple snow layer model including a parameterization of vertical water channel process in snowpack. Cold Reg. Sci. Technol., 59, 143151, (doi: 10.1016/j.coldregions.2009.09.002), International Snow Science Workshop (ISSW) 2008

T Katsushima , S Yamaguchi , T Kumakura and A Sato (2013) Experimental analysis of preferential flow in dry snowpack. Cold Reg. Sci. Technol., 85(0), 206216, (doi: 10.1016/j.coldregions.2012.09.012)

A Kovacs , AJ Gow and RM Morey (1995) The in-situ dielectric constant of polar firn revisited. Cold Reg. Sci. Technol., 23(3), 245256, (doi: 10.1016/0165-232X(94)00016-Q)

C Lang , X Fettweis and M Erpicum (2015) Stable climate and surface mass balance in Svalbard over 1979–2013 despite the Arctic warming. Cryosphere, 9(1), 83101 (doi: 10.5194/tc-9-83-2015)

K Langley , P Lacroix , SE Hamran and O Brandt (2009) Sources of backscatter at 5.3 GHz from a superimposed ice and firn area revealed by multi-frequency GPR and cores. J. Glaciol., 55(190), 373383 (doi: 10.3189/002214309788608660)

SRM Ligtenberg , MM Helsen and MR van den Broeke (2011) An improved semi-empirical model for the densification of Antarctic firn. Cryosphere, 5(4), 809819 (doi: 10.5194/tc-5-809-2011)

H Machguth , O Eisen , F Paul and M Hoelzle (2006) Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent Alpine glaciers. Geophys. Res. Lett., 33(13), (doi: 10.1029/2006GL026576), l13503

H Machguth and 9 others (2016) Greenland meltwater storage in firn limited by near-surface ice formation. Nat. Clim. Change 6, 390393 (doi: 10.1038/nclimate2899)

T Malone , B Hubbard , D Merton-Lyn , P Worthington and R Zwiggelaar (2013) Borehole and Ice Feature Annotation Tool (BIFAT): a program for the automatic and manual annotation of glacier borehole images. Comput. Geosci., 51(0), 381389, (doi: 10.1016/j.cageo.2012.09.002)

P Marsh and MK Woo (1984) Wetting front advance and freezing of meltwater within a snow cover: 1. observations in the Canadian Arctic. Water Resour. Res., 20(12), 18531864, (doi: 10.1029/WR020i012p01853)

HP Marshall , M Schneebeli and G Koh (2007) Snow stratigraphy measurements with high-frequency FMCW radar: comparison with snow micro-penetrometer. Cold Reg. Sci. Technol., 47(1–2), 108117, (doi: 10.1016/j.coldregions.2006.08.008), a Selection of papers presented at the International Snow Science Workshop, Jackson Hole, Wyoming, September 19–24, 2004

Ø Nordli , R Przybylak , A Ogilvie and K Isaksen (2014) Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898–2012. Polar Res., 33, (doi: 10.3402/polar.v33.21349)

A Pälli and 6 others (2002) Spatial and temporal variability of snow accumulation using ground-penetrating radar and ice cores on a Svalbard glacier. J. Glaciol., 48(162), 417424 (doi: 10.3189/172756502781831205)

V Parry and 6 others (2007) Investigations of meltwater refreezing and density variations in the snowpack and firn within the percolation zone of the Greenland ice sheet. Ann. Glaciol., 46(1), 6168 (doi: 10.3189/172756407782871332)

VA Pohjola and 7 others (2002) Effect of periodic melting on geochemical and isotopic signals in an ice core from Lomonosovfonna, Svalbard. J. Geophys. Res.: Atmos., 107(D4), (doi: 10.1029/2000JD000149)

M Proksch , H Löwe and M Schneebeli (2015) Density, specific surface area, and correlation length of snow measured by high-resolution penetrometry. J. Geophys. Res.: Earth Surf., 120(2), 346362, (doi: 10.1002/2014JF003266), 2014JF003266

CH Reijmer and R Hock (2008) Internal accumulation on Storglaciären, Sweden, in a multi-layer snow model coupled to a distributed energy- and mass-balance model. J. Glaciol., 54(184), 6172 (doi: 10.3189/002214308784409161)

CH Reijmer , MR van den Broeke , X Fettweis , J Ettema and LB Stap (2012) Refreezing on the Greenland ice sheet: a comparison of parameterizations. Cryosphere, 6(4), 743762 (doi: 10.5194/tc-6-743-2012)

C Richardson , E Aarholt , SE Hamran , P Holmlund and E Isaksson (1997) Spatial distribution of snow in western Dronning Maud land, east Antarctica, mapped by a ground-based snow radar. J. Geophys. Res.: Solid Earth, 102(B9), 2034320353, (doi: 10.1029/97JB01441)

M Schneebeli , C Pielmeier and JB Johnson (1999) Measuring snow microstructure and hardness using a high resolution penetrometer. Cold Reg. Sci. Technol., 30(1–3), 101114, (doi: 10.1016/S0165-232X(99)00030-0)

WA Schneider (1978) Integral formulation for migration in two and three dimensions. Geophysics, 43(1), 4976 (doi: 10.1190/1.1440828)

T Schneider and P Jansson (2004) Internal accumulation in firn and its significance for the mass balance of Storglaciären Sweden. J. Glaciol., 50(168), 2534 (doi: 10.3189/172756504781830277)

J Schweizer , K Kronholm , JB Jamieson and KW Birkeland (2008) Review of spatial variability of snowpack properties and its importance for avalanche formation. Cold Reg. Sci. Technol., 51, 253272, (doi: 10.1016/j.coldregions.2007.04.009), international Snow Science Workshop (ISSW) 2006

B Sjögren and 6 others (2007) Instruments and methods - determination of firn density in ice cores using image analysis. J. Glaciol., 53(182), 413419, (doi: 10.3189/002214307783258369)

L Sold , M Huss , A Eichler , M Schwikowski and M Hoelzle (2015) Unlocking annual firn layer water equivalents from ground-penetrating radar data on an alpine glacier. Cryosphere, 9(3), 10751087 (doi: 10.5194/tc-9-1075-2015)

M Sturm and C Benson (2004) Scales of spatial heterogeneity for perennial and seasonal snow layers. Ann. Glaciol., 38(1), 253260 (doi: 10.3189/172756404781815112)

S Sugiyama and 6 others (2012) Snow density along the route traversed by the Japanese-Swedish Antarctic Expedition 2007/08. J. Glaciol., 58(209), 529539 (doi: 10.3189/2012JoG11J201)

KD Tape , N Rutter , HP Marshall , R Essery and M Sturm (2010) Recording microscale variations in snowpack layering using near-infrared photography. J. Glaciol., 56(195), 7580 (doi: 10.3189/002214310791190938)

E Trujillo and M Lehning (2015) Theoretical analysis of errors when estimating snow distribution through point measurements. Cryosphere, 9(3), 12491264 (doi: 10.5194/tc-9-1249-2015)

RSW Van de Wal and 6 others (2002) Reconstruction of the historical temperature trend from measurements in a medium-length borehole on the Lomonosovfonna plateau, Svalbard. Ann. Glaciol., 35, 371378, (doi: 10.3189/172756402781816979)

WJJ Van Pelt and 5 others (2012) Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model. Cryosphere, 6(3), 641659 (doi: 10.5194/tc-6-641-2012)

WJ Van Pelt and 5 others (2014) Inverse estimation of snow accumulation along a radar transect on Nordenskiöldbreen, Svalbard. J. Geophys. Res.: Earth Surf., 119(4), 816835, (doi: 10.1002/2013JF003040)

CP Vega and 9 others (2016) A synthetic ice core approach to estimate ion relocation in an ice field site experiencing periodical melt: a case study on Lomonosovfonna, Svalbard. Cryosphere, 10(3), 961976 (doi: 10.5194/tc-10-961-2016)

PA Waldner , M Schneebeli , U Schultze-Zimmermann and H Flühler (2004) Effect of snow structure on water flow and solute transport. Hydrol. Process., 18(7), 12711290, (doi: 10.1002/hyp.1401)

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 30
Total number of PDF views: 229 *
Loading metrics...

Abstract views

Total abstract views: 389 *
Loading metrics...

* Views captured on Cambridge Core between 17th November 2016 - 24th September 2017. This data will be updated every 24 hours.