Skip to main content Accessibility help
×
Home

The morphology of organic nanocolumn arrays: Amorphous versus crystalline solids

Published online by Cambridge University Press:  31 January 2011

Jian Zhang
Affiliation:
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Ingo Salzmann
Affiliation:
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Peter Schäfer
Affiliation:
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Martin Oehzelt
Affiliation:
Institut für Experimentalphysik, Johannes Kepler Universität Linz, A-4040 Linz, Austria
Steffen Duhm
Affiliation:
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Jürgen P. Rabe
Affiliation:
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Norbert Koch
Affiliation:
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Corresponding
Get access

Abstract

The morphology of nanocolumns grown by glancing angle deposition is studied for molecular materials forming amorphous and crystalline solids. Amorphous tris(8-hydroxyquinoline)aluminum nanocolumn arrays were obtained at sample rotation speeds varying from 0.3 rpm (revolutions per minute) to 30 rpm. For crystalline pentacene, an array of regular nanocolumns formed at a rotation speed of 3 rpm, while higher and lower rotation speeds led to a wide distribution of column heights and shapes. The incoming molecular flux and the molecular diffusion length on column surfaces, both dependent on rotation speed, were found to govern the resulting morphology of crystalline pentacene nanocolumns.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

1Hrudey, P.C.P.Westra, K.L., and Brett, M.J.: Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition. Adv. Mater. 18, 224 (2006).CrossRefGoogle Scholar
2Hrudey, P.C.P., Szeto, B. and Brett, M.J.: Strong circular Bragg phenomena in self-ordered porous helical nanorod arrays of Alq3. Appl. Phys. Lett. 88, 251106 (2006).CrossRefGoogle Scholar
3Zhang, J.Salzmann, I.Zhang, F.J., Xu, Z.Rogaschewski, S.Rabe, J.P., and Koch, N.: Arrays of crystalline C60 and pentacene nanocolumns. Appl. Phys. Lett. 90, 193117 (2007).CrossRefGoogle Scholar
4Horowitz, G.: Organic field-effect transistors. Adv. Mater. 10, 365 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
5Sirringhaus, H.Tessler, N. and Friend, R.H.: Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741 (1998).CrossRefGoogle ScholarPubMed
6Pope, M. and Swenberg, C.E.: Electronic Processes in Organic Crystals and Polymers (Oxford University Press, Oxford, UK, 1999).Google Scholar
7Dimitrakopoulos, C.D. and Malenfant, P.R.L.: Organic thin film transistors for large area electronics. Adv. Mater. 14, 99 (2002).3.0.CO;2-9>CrossRefGoogle Scholar
8Chabinyc, M.L. and Salleo, A.: Materials requirements and fabrication of active matrix arrays of organic thin-film transistors for displays. Chem. Mater. 16, 4509 (2004).CrossRefGoogle Scholar
9Young, N.O. and Kowal, J.: Optically active fluorite films. Nature 183, 104 (1959).CrossRefGoogle Scholar
10Robbie, K.Brett, M.J., and Lakhtakia, A.: Chiral sculptured thin films. Nature 384, 616 (1996).CrossRefGoogle Scholar
11Robbie, K. and Brett, M.J.: Sculptured thin films and glancing angle deposition: Growth mechanics and applications. J. Vac. Sci. Technol., A 15, 1460 (1997).CrossRefGoogle Scholar
12Zhao, Y.P., Ye, D.X., Wang, G.C., and Lu, T.M.: Novel nano-column and nano-flower arrays by glancing angle deposition. Nano Lett. 2, 351 (2002).CrossRefGoogle Scholar
13Robbie, K.Shafai, C. and Brett, M.J.: Thin films with nanometer-scale pillar microstructure. J. Mater. Res. 14, 3158 (1999).CrossRefGoogle Scholar
14Robbie, K.Friedrich, L.J., Dew, S.K., Smy, T. and Brett, M.J.: Fabrication of thin films with highly porous microstructures. J. Vac. Sci. Technol., A 13, 1032 (1995).CrossRefGoogle Scholar
15Dick, B.Brett, M.J., and Smy, T.: Investigation of substrate rotation at glancing incidence on thin-film morphology. J. Vac. Sci. Technol., B 21, 2569 (2003).CrossRefGoogle Scholar
16Forrest, S.R.: Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97, 1793 (1997).CrossRefGoogle ScholarPubMed
17Ruiz, R.Choudhary, D.Nickel, B.Toccoli, T.Chang, K.C., Mayer, A.C., Clancy, P.Blakely, J.M., Headrick, R.L., Iannotta, S. and Malliaras, G.G.: Pentacene thin film growth. Chem. Mater. 16, 4497 (2004).CrossRefGoogle Scholar
18Cölle, M. and Brütting, W.: Thermal, structural and photophysical properties of the organic semiconductor Alq3. Phys. Status Solidi A 201, 1095 (2004).CrossRefGoogle Scholar
19Shi, J. and Tang, C.: Doped organic electroluminescent devices with improved stability. Appl. Phys. Lett. 70, 1665 (1997).CrossRefGoogle Scholar
20Berleb, S. and Brütting, W.: Dispersive electron transport in tris (8-hydroxyquinoline) aluminum (Alq3) probed by impedance spectroscopy. Phys. Rev. Lett. 89, 286601 (2002).CrossRefGoogle ScholarPubMed
21Schiefer, S.Huth, M.Dobrinevski, A. and Nickel, B.: Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films. J. Am. Chem. Soc. 129, 10316 (2007).CrossRefGoogle ScholarPubMed
22Nabok, D.Puschnig, P.Ambrosch-Draxl, C., Werzer, O.Resel, R. and Smilgies, D-M.: Crystal and electronic structures of pentacene thin films from grazing-incidence x-ray diffraction and first-principles calculations. Phys. Rev. B 76, 235322 (2007).CrossRefGoogle Scholar
23Yoshida, H.Inaba, K. and Sato, N.: X-ray diffraction reciprocal space mapping study of the thin film phase of pentacene. Appl. Phys. Lett. 90, 181930 (2007).CrossRefGoogle Scholar
24Mattheus, C.C., Dros, A.B., Baas, J.Meetsma, A.J., Boer, L. and Palstra, T.T.M.: Polymorphism in pentacene. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 57, 939 (2001).CrossRefGoogle ScholarPubMed
25Campbell, R.B., Robertson, J.M., and Trotter, J.: The crystal structure of hexacene, and a revision of the crystallographic data for tetracene. Acta Crystallogr. 15, 289 (1962).CrossRefGoogle Scholar
26Steudel, S.Vusser, S.D., Jonge, S.D., Janssen, D.Verlaak, S.Genoe, J. and Heremans, P.: Influence of the dielectric roughness on the performance of pentacene transistors. Appl. Phys. Lett. 85, 4400 (2004).CrossRefGoogle Scholar
27Yang, H.Kim, S.H., Yang, L.Yang, S.Y., and Park, C.E.: Pentacene nanostructures on surface-hydrophobicity-controlled polymer/ SiO2 bilayer gate-dielectrics. Adv. Mater. 19, 2868 (2007).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 24 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-xz9qf Total loading time: 0.264 Render date: 2021-01-18T23:07:58.177Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Mon Jan 18 2021 22:56:12 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The morphology of organic nanocolumn arrays: Amorphous versus crystalline solids
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The morphology of organic nanocolumn arrays: Amorphous versus crystalline solids
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The morphology of organic nanocolumn arrays: Amorphous versus crystalline solids
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *