Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-25T19:41:16.567Z Has data issue: false hasContentIssue false

Self-sustained cyclic tin induced crystallization of amorphous silicon

Published online by Cambridge University Press:  26 August 2015

Volodymyr B. Neimash*
Affiliation:
Department of Physics of Radiation Processes, Institute of Physics, National Academy of Sciences of Ukraine, Nauky Pr., Kyiv 03028, Ukraine
Alexander O. Goushcha*
Affiliation:
Department of Physics of Radiation Processes, Institute of Physics, National Academy of Sciences of Ukraine, Nauky Pr., Kyiv 03028, Ukraine
Petro Y. Shepeliavyi
Affiliation:
Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Nauky Pr., Kyiv 03028, Ukraine
Volodymyr O. Yukhymchuk
Affiliation:
Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Nauky Pr., Kyiv 03028, Ukraine
Viktor A. Danko
Affiliation:
Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Nauky Pr., Kyiv 03028, Ukraine
Viktor V. Melnyk
Affiliation:
Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
Andrey G. Kuzmich
Affiliation:
Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
*
a)Address all correspondence to these authors. e-mail: goushcha@cox.net
Get access

Abstract

Experimental evidences for a recently proposed mechanism of tin-induced crystallization of amorphous silicon are presented. The mechanism discusses a crystalline phase growth through cyclic processes of formation and decay of a super-saturated solution of silicon in molten tin at the interface with the amorphous silicon. The suggested mechanism is validated using a nonlinear dynamical model that takes into account the mass diffusion of the components of the system, heat transfer caused by latent (crystallization) heat release and amorphous silicon dissolution events, and concentration nonuniformities created by silicon crystallization. The analysis of a stationary-state solution of the model confirms the existence of periodic solutions for the partial volume of the crystalline phase and other system's variables. Possible applications of the proposed mechanism in manufacturing of cost-effective nanocrystalline silicon films for the third-generation solar cell technology are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beard, M.C., Luther, J.M., and Nozik, A.J.: The promise and challenge of nanostructured solar cells. Nat. Nanotechnol. 9, 951 (2014).Google Scholar
Staebler, D.L. and Wronski, C.R.: Reversible conductivity changes in discharge-produced amorphous Si. Appl. Phys. Lett. 31, 292 (1977).Google Scholar
Alferov, Z.I., Andreev, V.M., and Rumyantsev, V.D.: Solar photovoltaics: Trends and prospects. Semiconductors 38(8), 899 (2004).Google Scholar
Yan, B., Yue, G., Xu, X., Yang, J., and Guha, S.: High efficiency amorphous and nanocrystalline silicon solar cells. Phys. Status Solidi A 207(3), 671 (2010).Google Scholar
Lewis, N.S.: Toward cost-effective solar energy use. Science 315, 798 (2007).CrossRefGoogle ScholarPubMed
Søndergaard, R., Hösel, M., Angmo, D., Larsen-Olsen, T.T., and Krebs, F.C.: Roll-to-roll fabrication of polymer solar cells. Mater. Today 15(1–2), 36 (2012).Google Scholar
Birkholz, M., Selle, B., Conrad, E., Lips, K., and Fuhs, W.: Evolution of structure in thin microcrystalline silicon films grown by electron-cyclotron resonance chemical vapor deposition. J. Appl. Phys. 88(7), 4376 (2000).CrossRefGoogle Scholar
Rech, B., Roschek, T., Müller, J., Wieder, S., and Wagner, H.: Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF (13.56 MHz) plasma excitation frequencies. Sol. Energy Mater. Sol. Cells 66(1–4), 267 (2001).Google Scholar
van Veen, M.K., van der Werf, C.H.M., and Schropp, R.E.I.: Tandem solar cells deposited using hot-wire chemical vapor deposition. J. Non-Cryst. Solids 338, 655 (2004).CrossRefGoogle Scholar
Mai, Y., Klein, S., Carius, R., Stiebig, H., Houben, L., Geng, X., and Finger, F.: Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers. J. Non-Cryst. Solids 352(9–20), 1859 (2006).Google Scholar
Li, H., Franken, R.H., Stolk, R.L., van der Werf, C.H.M., Rath, J.K., and Schropp, R.E.I.: Controlling the quality of nanocrystalline silicon made by hot-wire chemical vapor deposition by using a reverse H2 profiling technique. J. Non-Cryst. Solids 354(19–25), 2087 (2008).Google Scholar
Amrani, R., Pichot, F., Podlecky, J., Foucaran, A., Chahed, L., and Cuminal, Y.: Optical and structural proprieties of nc-Si:H prepared by argon diluted silane PECVD. J. Non-Cryst. Solids 358(17), 1978 (2012).Google Scholar
Fugallo, G. and Mattoni, A.: Thermally induced recrystallization of textured hydrogenated nanocrystalline silicon. Phys. Rev. B 89, 045301 (2014).Google Scholar
Ro, J-S.: Crystallization of amorphous silicon films using Joule heating. J. Korean Inst. Surf. Eng. 47(1), 20 (2014).Google Scholar
Nast, O. and Wenham, S.R.: Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization. J. Appl. Phys. 88(1), 124 (2000).Google Scholar
Mohiddon, A. and Krishna, G.: Metal induced crystallization. In Crystallization – Science and Technology, Marcello, A. ed. (InTech, Rijeka, Croatia, 2012); p. 461.Google Scholar
van Gestel, D., Gordon, I., and Poortmans, J.: Aluminum-induced crystallization for thin-film polycrystalline silicon solar cells: Achievements and perspective. Sol. Energy Mater. Sol. Cells 119, 261 (2013).Google Scholar
Neimash, V.B., Kraitchinskii, A., Kras’ko, M., Puzenko, O., Claeys, C., Simoen, E., Svensson, B., and Kuznetsov, A.: Influence of tin impurities on the generation and annealing of thermal oxygen donors in Czochralski silicon at 450 °C. J. Electrochem. Soc. 147, 2727 (2000).Google Scholar
Claeys, C., Simoen, E., Neimash, V.B., Kraitchinskii, A., Kras’ko, M., Puzenko, O., Blondeel, A., and Clauws, P.: Tin doping of silicon for controlling oxygen precipitation and radiation hardness. J. Electrochem. Soc. 148, G738 (2001).Google Scholar
Olesinski, R.W. and Abbaschian, G.J.: The Si–Sn (silicon–tin) system. Bull. Alloy Phase Diagrams 5(3), 273 (1984).Google Scholar
Mohiddon, M.A. and Krishna, M.G.: Growth and optical properties of Sn–Si nanocomposite thin films. J. Mater. Sci. 47, 6972 (2012).Google Scholar
Jeon, M., Jeong, C., and Kamisako, K.: Tin induced crystallization of hydrogenated amorphous silicon thin films. Mater. Sci. Technol. 26, 875 (2010).CrossRefGoogle Scholar
Thornton, R.P., Elliman, R.G., and Williams, J.S.: Amorphous-to-polycrystalline phase transformations in Sn-implanted silicon. J. Mater. Res. 5, 1003 (1990).Google Scholar
Lin, F. and Hatalis, M.K.: Crystallization of tin-implanted amorphous silicon thin films. MRS Proc. 279, 553558 (1993).Google Scholar
Parsons, G.N., Cook, J.W., Lucovsky, G., Lin, S.Y., and Mantini, M.J.: Deposition of a-Si,Sn:H alloy films by reactive magnetron sputtering from separate Si and Sn targets. J. Vac. Sci. Technol., A 4, 470 (1986).Google Scholar
Ragan, R., Min, K.S., and Atwater, H.A.: Direct energy gap group IV semiconductor alloys and quantum dot arrays in SnxGe1−x/Ge and SnxSi1−x/Si alloy systems. Mater. Sci. Eng., B 87, 204 (2001).Google Scholar
Voitovych, V.V., Neimash, V.B., Krasko, N.N., Kolosiuk, A.G., Povarchuk, V.Y., Rudenko, R.M., Makara, V.A., Petrunya, R.V., Juhimchuk, V.O., and Strelchuk, V.V.: The effect of Sn impurity on the optical and structural properties of thin silicon films. Semiconductors 45(10), 1281 (2011).Google Scholar
Neimash, V.B., Poroshin, V.M., Kabaldin, A.M., Yukhymchuk, V.O., Shepelyavyi, P.E., Makara, V.A., and Larkin, S.Y.: Microstructure of thin Si–Sn composite films. Ukr. J. Phys. 58(9), 865 (2013).Google Scholar
Neimash, V., Poroshin, V., Shepeliavyi, P., Yukhymchuk, V., Melnyk, V., Kuzmich, A., Makara, V., and Goushcha, A.O.: Tin induced a-Si crystallization in thin films of Si–Sn alloys. J. Appl. Phys. 114(21), 213104 (2013).Google Scholar
Richter, H., Wang, Z.P., and Ley, L.: The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39(5), 625 (1981).Google Scholar
Campbell, I.H. and Fauchet, P.M.: The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58(10), 739 (1986).CrossRefGoogle Scholar
Bustarret, E., Hachicha, M.A., and Brunel, M.: Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy. Appl. Phys. Lett. 52, 1675 (1988).CrossRefGoogle Scholar
Hort, M. and Spohn, T.: Crystallization calculations for a binary melt cooling at constant rates of heat removal - Implications for the crystallization of magma bodies. Earth Planet. Sci. Lett. 107(3–4), 463 (1991).Google Scholar
Becker, R. and Döring, W.: Kinetic treatment of germ formation in supersaturated vapour. Ann. Phys. 24(8), 719 (1935).Google Scholar
Tavare, N.S.: Industrial Crystallization: Process Simulation Analysis and Design (Plenum Press, New York, 1995); p. 527.Google Scholar
Sarikov, A., Schneider, J., Muske, M., Gall, S., and Fuhs, W.: Theoretical study of the kinetics of grain nucleation in the aluminium-induced layer-exchange process. J. Non-Cryst. Solids 352(9–20), 980 (2006).Google Scholar
Avrami, M.: Kinetics of phase change. I. General theory. J. Chem. Phys. 7(12), 1103 (1939).CrossRefGoogle Scholar
Clouet, E.: Modeling of nucleation processes. In ASM Handbook: Fundamentals of Modeling for Metals Processing, Vol. 22A, Furrer, D.U. and Semiatin, S.L. eds.; ASM International: Materials Park, OH, 2009; p. 203.Google Scholar
Hiraki, A.: A model on the mechanism of room temperature interfacial intermixing reaction in various metal semiconductor couples: What triggers the reaction? J. Electrochem. Soc. 127, 2662 (1980).Google Scholar
Chikita, H., Matsumura, R., Kai, Y., Sadoh, T., and Miyao, M.: Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding. Appl. Phys. Lett. 105, 202112 (2014).Google Scholar
Toko, K., Oya, N., Saitoh, N., Yoshizawa, N., and Suemasu, T.: 70 °C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge. Appl. Phys. Lett. 106, 082109 (2015).Google Scholar
Toko, K., Numata, R., Saitoh, N., Yoshizawa, N., Usami, N., and Suemasu, T.: Selective formation of large-grained, (100)- or (111)-oriented Si on glass by Al-induced layer exchange. J. Appl. Phys. 115, 094301 (2014).Google Scholar
Numata, d.R., Toko, K., Saitoh, N., Yoshizawa, N., Usami, N., and Suemasu, T.: Orientation control of large-grained Si films on insulators by thickness-modulated Al-induced crystallization. Cryst. Growth Des. 13, 1767 (2013).Google Scholar
Nicolis, G. and Prigogine, I.: Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations (J. Wiley and Sons, New York; London; Sydney, 1977); p. 491.Google Scholar
Haken, H.: Synergetics, an Introduction: Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology, 3rd rev. ed. (Springer-Verlag, New York, 1983); p. 371.Google Scholar
Toramaru, A.: A numerical experiment of crystallization for a binary eutectic system with application to igneous textures. J. Geophys. Res.: Solid Earth 106(B3), 4037 (2001).Google Scholar
Toramaru, A. and Matsumoto, M.: Numerical experiment of cyclic layering in a solidified binary eutectic melt. J. Geophys. Res.: Solid Earth 117, B02209 (2012).Google Scholar
Geiler, H. D., Glaser, E., Götz, G., and Wagner, M.: Explosive crystallization in silicon. J. Appl. Phys. 59(9), 3091 (1986).Google Scholar
Kurtze, D., van Saarloos, W., and Weeks, J.: Front propagation in self-sustained and laser-driven explosive crystal-growth—Stability analysis and morphological aspects. Phys. Rev. B 30(3), 1398 (1984).Google Scholar
van Saarloos, W. and Weeks, J.D.: Surface undulations in explosive crystallization—A nonlinear-analysis of a thermal-instability. Phys. D 12(1–3), 279 (1984).CrossRefGoogle Scholar
Smagin, I. and Nepomnyashchy, A.: Stability analysis of explosive crystallization front in the ESPE mode. Phys. D 238(6), 706 (2009).Google Scholar
Wakefield, G.F. and Setty, H.S.N.: Tin-lead purification of silicon. Patent US3933981 A, 1976.Google Scholar
Maronchuk, I.E., Kulyutkina, T.F., and Maronchuk, I.I.: Method for purification of technical purity silicon. Patent UA84653 (Ukraine), 2008.Google Scholar