Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 55
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Bataineh, Khaled M. 2016. Developing of an environmental cell TEM holder for dynamic in situ observation. Review of Scientific Instruments, Vol. 87, Issue. 2, p. 023705.


    Koh, Ai Leen Gidcumb, Emily Zhou, Otto and Sinclair, Robert 2016. Oxidation of Carbon Nanotubes in an Ionizing Environment. Nano Letters, Vol. 16, Issue. 2, p. 856.


    Tao, Franklin (Feng) and Crozier, Peter A. 2016. Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis. Chemical Reviews, Vol. 116, Issue. 6, p. 3487.


    Bordiga, Silvia Lamberti, Carlo Bonino, Francesca Travert, Arnaud and Thibault-Starzyk, Frédéric 2015. Probing zeolites by vibrational spectroscopies. Chem. Soc. Rev., Vol. 44, Issue. 20, p. 7262.


    Chen, Xin Li, Chang and Cao, Hongling 2015. Recent developments of the in situ wet cell technology for transmission electron microscopies. Nanoscale, Vol. 7, Issue. 11, p. 4811.


    Gamalski, A. D. Tersoff, J. Kodambaka, S. Zakharov, D. N. Ross, F. M. and Stach, E. A. 2015. The Role of Surface Passivation in Controlling Ge Nanowire Faceting. Nano Letters, Vol. 15, Issue. 12, p. 8211.


    Miller, Benjamin K. Barker, Trevor M. and Crozier, Peter A. 2015. Novel sample preparation for operando TEM of catalysts. Ultramicroscopy, Vol. 156, p. 18.


    Ohashi, Toshiyuki 2015. Carbon Nanomaterials for Advanced Energy Systems.


    Picher, Matthieu Mazzucco, Stefano Blankenship, Steve and Sharma, Renu 2015. Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy. Ultramicroscopy, Vol. 150, p. 10.


    Su, Dang Sheng Zhang, Bingsen and Schlögl, Robert 2015. Electron Microscopy of Solid Catalysts—Transforming from a Challenge to a Toolbox. Chemical Reviews, Vol. 115, Issue. 8, p. 2818.


    Wang, Yawen He, Jiating Liu, Cuicui Chong, Wen Han and Chen, Hongyu 2015. Thermodynamik und Kinetik in der Nanosynthese. Angewandte Chemie, Vol. 127, Issue. 7, p. 2046.


    Wang, Yawen He, Jiating Liu, Cuicui Chong, Wen Han and Chen, Hongyu 2015. Thermodynamics versus Kinetics in Nanosynthesis. Angewandte Chemie International Edition, Vol. 54, Issue. 7, p. 2022.


    Frenkel, Anatoly I. Cason, Michael W. Elsen, Annika Jung, Ulrich Small, Matthew W. Nuzzo, Ralph G. Vila, Fernando D. Rehr, John J. Stach, Eric A. and Yang, Judith C. 2014. Critical review: Effects of complex interactions on structure and dynamics of supported metal catalysts. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 32, Issue. 2, p. 020801.


    Jinschek, J. R. 2014. Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas–solid interactions. Chemical Communications, Vol. 50, Issue. 21, p. 2696.


    Yoshida, Kenta Bright, Alexander N Ward, Michael R Lari, Leonardo Zhang, Xudong Hiroyama, Tomoki Boyes, Edward D and Gai, Pratibha L 2014. Dynamic wet-ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere. Nanotechnology, Vol. 25, Issue. 42, p. 425702.


    Bright, A.N. Yoshida, K. and Tanaka, N. 2013. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas. Ultramicroscopy, Vol. 124, p. 46.


    Browning, Nigel D. Aydin, Ceren Lu, Jing Kulkarni, Apoorva Okamoto, Norihiko L. Ortalan, Volkan Reed, Bryan W. Uzun, Alper and Gates, Bruce C. 2013. QuantitativeZ-Contrast Imaging of Supported Metal Complexes and Clusters-A Gateway to Understanding Catalysis on the Atomic Scale. ChemCatChem, Vol. 5, Issue. 9, p. 2673.


    Grunwaldt, Jan-Dierk Wagner, Jakob B. and Dunin-Borkowski, Rafal E. 2013. Imaging Catalysts at Work: A Hierarchical Approach from the Macro- to the Meso- and Nano-scale. ChemCatChem, Vol. 5, Issue. 1, p. 62.


    Jeangros, Q. Hansen, T. W. Wagner, J. B. Damsgaard, C. D. Dunin-Borkowski, R. E. Hébert, C. Van herle, J. and Hessler-Wyser, A. 2013. Reduction of nickel oxide particles by hydrogen studied in an environmental TEM. Journal of Materials Science, Vol. 48, Issue. 7, p. 2893.


    Koh, Ai Leen Gidcumb, Emily Zhou, Otto and Sinclair, Robert 2013. Observations of Carbon Nanotube Oxidation in an Aberration-Corrected Environmental Transmission Electron Microscope. ACS Nano, Vol. 7, Issue. 3, p. 2566.


    ×

An Environmental Transmission Electron Microscope for in situ Synthesis and Characterization of Nanomaterials

  • Renu Sharma (a1)
  • DOI: http://dx.doi.org/10.1557/JMR.2005.0241
  • Published online: 01 July 2005
Abstract

The world of nanomaterials has become the real world for most applications in the area of nanotechnology. As postsynthesis handling of materials at the nanoscale level is impractical, nanomaterials must be synthesized directly as part of a device or circuit. The demands of nanotechnology have led to modifications in the design of transmission electron microscopes (TEMs) that enable in situ synthesis and characterization simultaneously. The environmental TEM (ETEM) is one such modified instrument that has often been used to follow gas–solid and/or liquid–solid interactions at elevated temperatures. Although the history and development of the ETEM, also called the controlled atmosphere or environmental cell TEM, is as old as transmission electron microscopy itself, developments in the design of medium-voltage TEMs have succeeded in bringing resolutions down to the subnanometer level. A modern ETEM equipped with a field-emission gun, energy filter or electron energy-loss spectrometer, scanning transmission electron microscopy coils, and bright-field and dark-field detectors can be a versatile tool for understanding chemical processes at the nanometer level. This article reviews the design and operations of a dedicated ETEM. Its applications range from the in situ characterization of reaction steps, such as oxidation-reduction and hydroxylation, to the in situ synthesis of nanomaterials, such as quantum dots and carbon nanotubes. Some examples of the current and the future applications for the synthesis and characterization of nanomaterials are also discussed.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: renu.sharma@asu.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1U. Dahmen , S. Hagege , F. Faudot , T. Radetic and E. Johnson : Observation of interface pre-melting at grain-boundary precipitates of Pb in Al. Philos. Mag. 84, 2651 (2004).

2Y. Senda , K. Sasaki and H. Saka : Melting temperature of a wedge-shaped thin crystal of tin. Philos. Mag. 84, 2635 (2004).

3H. Tanaka , N. Hirashita and R. Sinclair : Kinetic analysis of the C49-C54 phase transformation in TiSi2 thin films by in situ observation. Jap. J. Appl. Phys. 37, 4284 (1998).

5A.G. Ramirez , T. Itoh and R. Sinclair : Crystallization of amorphous carbon thin films in the presence of magnetic media. J. Appl. Phys. 85, 1508 (1999).

6A.M. Minor , E.T. Lilleeodden , E.A. Stach , J.W. Morris Jr.: In-situ transmission-electron-microscopy study of the nanoindentation behavior of Al. J. Electron. Mater. 31, 958 (2002).

7M. Jin , A.M. Minor , E.A. Stach , J.W. Morris Jr.: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004).

9M.M.J. Treacy , T.W. Ebbesen and J.M. Gibson : Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).

10P. Poncharal , Z.L. Wang , D. Ugrate and W.A. de Heer : Electrostatic deflections and electrochemical resonances of carbon nanotubes. Science 283, 1513 (1999).

11J. Cumings , A. Zettl , M.R. McCartney and J.C.H. Spence : Electron holography of field-emitting carbon nanotubes. Phys. Rev. Lett. 88, 056804 (2002).

12Z.L. Wang : New developments in transmission electron microscopy for nanotechnology. Adv. Mater. 15, 1497 (2003).

13H. Poppa : High resolution, high speed ultrahigh vacuum microscopy. J. Vac. Sci. Technol. A 22, 1931 (2004).

15D.F. Parsons , V.R. Matricardi , R.C. Moretz and J.N. Turner Electron microscopy and diffraction of wet unstained and unfixed biological objects, in Advances in Biological and Medical Physics, Vol. 15, edited by J.H. Lawrence and J.W. Gofman (Academic Press, New York, NY, 1974) p. 161.

19G.M. Parkinson : High resolution, in situ controlled atmosphere transmission electron microscopy (CTEM) of heterogeneous catalysts. Catal. Lett. 2, 303 (1989).

20M.J. Williamson , R.M. Tromp , P.M. Vereecken , R. Hull and F.M. Rosss : Dynamic microscopy of nanoscale cluster growth at solid-liquid interface. Nat. Mater. 2(8), 532 (2003).

21P.L. Gai : Development of wet environmental TEM (Wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc. Microanal. 8, 21 (2002).

22H. Hashimoto , T. Naiki , T. Etoch and K. Fujiwara : High temperature gas reaction specimen chamber for an electron microscope. Jap. J. Appl. Phys. 7, 946 (1968).

23H.M. Flower : High voltage electron microscopy of environmental reactions. J. Microsc. 97, 171 (1973).

25T.C. Lee , D.K. Dewald , J.A. Eades , I.M. Robertson and H.K. Birnbaum : An environmental cell transmission electron microscope. Rev. Sci. Instrum. 62, 1438 (1991).

26E.D. Boyes , P.L. Gai and L.G. Hanna : Controlled environment (ECELL) TEM for dynamic in-situ reaction studies with HREM lattice imaging. Proc. Mater. Res. Soc. 404, 53 (1996).

27R. Sharma and K. Weiss : Development of a TEM to study in situ structural and chemical changes at atomic level during gas solid interaction at elevated temperatures. Microsc. Res. Tech. 42, 270 (1998).

30I. Robertson and D. Teter : Controlled environment transmission electron microscopy. Microsc. Res. Tech. 42, 260 (1998).

31T.W. Hansen , J.B. Wagner , P.L. Hansen , S. Dahl , H. Topsoe and J.H. Jacobsen : Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 1508 (2001).

33R.T.K. Baker , M.A. Barber , P.S. Harris , F.S. Feates and R.J. Waite : Nucleation and growth of carbon deposits from the Ni catalyzed decomposition of acetylene. J. Catal. 26, 51 (1972).

34R.T.K. Baker , P.S. Harris , R.B. Thomas and R.J. Waite : Formation of filamentous car bon from iron, cobalt and chromium catalyzed deposition of acetylene. J. Catal. 30, 315 (1973).

35R.T.K. Baker : Catalytic growth of carbon filaments. Carbon 27, 315 (1989).

36R.T.K. Baker , J.J. Chludzinski Jr. N.S. Dudash and A.J. Simoens : The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum. Carbon 21, 463 (1983).

38P.L. Gai and K. Kourtakis : Solid state defect mechanism in vanadyl pyrophosphate catalyst-implications for selective oxidation. Science 267, 661 (1995).

41P.A. Crozier and A.K. Datye : Direct observation of reduction of PdO to Pd metal by in situ electron microscopy. Stud. Surf. Sci. Catal. 130, 3119 (2000).

42P.A. Crozier , R. Sharma and A.K. Datye : Oxidation and reduction of small palladium particles on silica. Microsc. Microanal. 4, 278 (1998).

43P.L. Gai and E.D. Boyes In Electron Microscopy of heterogeneous catalysis. Series in Microscopy and Materials Science (Institute of Physics Publishing, Bristol, Philadelphia, PA, 2003).

44H.K. Birnbaum and P. Sofronis : Hydrogen enhanced local plasticity—a mechanism for hydrogen-related fracture. Mater. Sci. Eng., A 176, 191 (1993).

45D.F. Teter , I.M. Robertson and H.K. Birbaum : The effects of hydrogen on the deformation and fracture of titanium. Acta Mater. 49, 4313 (2001).

46I.M. Robertson : The effect of hydrogen on dislocation dynamics. Eng. Fract. Mech. 68, 671 (2001).

48Z. Atzmon , R. Sharma , S.W. Russell and J.W. Mayer : Kinetics of copper grain growth during nitridation of Cu-Cr and Cu-Ti thin films by in situ TEM. Proc. Mater. Res. Soc. Symp. 337, 619 (1994).

50V.P. Oleshko , P.A. Crozier , R.D. Cantrell and A.D. Westwood : In situ real time environmental TEM of gas phase Ziegler-Natta catalytic polymerization of propylene. J. Electron Microsc. 51, S27 (2002).

52M.J. McKelvy , R. Sharma , A.V.G. Chizmeshya , R.W. Carpenter and K. Streib : Magnesium hydroxide dehydroxylation: In situ nanoscale observations of lamellar nucleation and growth. Chem. Mater. 13, 921 (2001).

53R. Sharma , M.J. McKelvy , H. Béarat , A.V.G. Chizmeshya and R.W. Carpenter : In situ nanoscale observations of the Mg(OH)2 dehydroxylation and rehydroxylation mechanisms. Philos. Mag. 84, 2711 (2004).

54P.A. Rou-Jane Liu , P.A. Crozier , C.M. Smith , D.A. Hucul , J. Blackson and G. Salaita : Metal sintering mechanisms and regeneration of palladium/alumina hydrogenation catalyst. Appl. Catal., A 282, 111 (2005).

55M. Gajdadziska-Josifoviska , R. Plass , M.A. Schofield , D.R. Gese and R. Sharma : In situ and ex situ electron microscopy studies of polar oxide surfaces with rock-salt structure. J. Elelctron Microsc. 51 S13 (2002).

57M.J. Sayagués and J.L. Hutchison : From Nb12O29 to Nb22O54 in a controlled environment high resolution microscope. J. Solid State Chem. 146, 202 (1999).

58M.J. Sayagués and J.L. Hutchison : A new niobium tungsten oxide as a result of an in situ reaction in a gas reaction cell microscope. J. Solid State Chem. 143, 33 (1999).

60R. Sharma , P.A. Crozier , Z.C. Kang and L. Eyring : Observation of dynamic nanostructural and nanochemical changes in ceria-based catalysts during in-situ reduction. Philos. Mag. 84, 2731 (2004).

62Z.C. Kang , J. Jhang and L. Eyring : The structural principles that underlie the higher oxides of rare earths. Z. Anorg. Allg. Chem. 622, 465 (1996).

63P. Knappe and L. Eyring : Preparation and electron microscopy of intermediate phases in the interval Ce7O12-Ce11O20. J. Solid State Chem. 58, 312 (1985).

64J. Drucker , R. Sharma , J. Kouvetakis and K. Weiss : In situ, real time observation of Al chemical vapor deposition on SiO2 in an environmental transmission electron microscope. J. Appl. Phys. 77, 2846 (1995).

66F.M. Ross , M. Kammler , M.C. Reuter and R. Hull : In-situ observations of self-assembled island nucleation on patterned substrates. Philos. Mag. 84, 2687 (2004).

68K. Mitsuishi , M. Shimojo , M. Han and K. Furuya : Electron-beam-induced deposition using a subnanometer-sized probe of high-energy electrons. Appl. Phys. Lett. 83, 2064 (2003).

70P.A. Crozier , J. Tolle , J. Kouvetakis and C. Ritter : Synthesis of uniform GaN quantum dot arrays via electron nanolithography of D2GaN3. Appl. Phys. Lett. 84, 3441 (2004).

71S. Helveg , C. Lopez-Cartes , J. Sehested , P.L. Hansen , B.S. Clausen , J.R. Rostrup-Nielsen , F. Abild-Pedersen and J. Norskov : Atomicscale imaging of carbon nanofibre growth. Nature 427, 426 (2004).

72R. Sharma and Z. Iqbal : In situ observations of carbon nanotube formation using environmental electron microscopy (ETEM). Appl. Phys. Lett. 84, 990 (2003).

75R. Sharma and P.A. Crozier Environmental transmission electron microscopy in nanotechnology, in Handbook of Microscopy for Nanotechnology, edited by N. Yao and Z.L. Wang (Kluwer Academic Publishers, Boston/New York/London, 2005, 1974) p. 531.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: