Skip to main content Accessibility help

Analysis for efficiency potential of crystalline Si solar cells

  • Masafumi Yamaguchi (a1), Kan-Hua Lee (a1), Kenji Araki (a1), Nobuaki Kojima (a1) and Yoshio Ohshita (a1)...


Efficiency potential of crystalline Si solar cells is analyzed by considering external radiative efficiency (ERE), voltage, and fill factor losses. Crystalline Si solar cells have an efficiency potential of more than 28.5% by realizing ERE of 20% from about 5% and normalized resistance of less than 0.05 from around 0.1. Nonradiative recombination losses in single-crystalline and multicrystalline Si solar cells are also discussed. Especially, nonrecombination and resistance losses in multicrystalline Si solar cells are shown to be higher than those of single-crystalline cells. Importance of further improvement of minority-carrier lifetime in crystalline Si solar cells is suggested for further improvement of crystalline Si solar cells. High efficiency of more than 28.5% will be realized by realizing high minority-carrier lifetime of more than 30 ms. Key issues for those ends are reduction in carbon concentration of less than 1 × 1014 cm−3, oxygen precipitated and dislocations even in single-crystalline Si solar cells, and reduction in dislocation density of less than 3 × 103 cm−2 in multicrystalline Si solar cells.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.WBGU (German Advisory Council on Global Change): World in Transition—Towards Sustainable Energy Systems (Earthsan, London, 2003); ISBN 1-85383-882-9,
2.Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanemitsu, M., Uzu, H., and Yamamoto, K.: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 21, 17032 (2017).
3.Ahrenkiel, R.K.: Minority-carrier lifetime in III–V semiconductors. In Semiconductors and Semimetsals, Vol. 39, Ahrenkiel, R.K. and Lundstrom, M.S., eds. (Academic Press, Boston); ch. 2, p. 58.
4.Yamaguchi, M., Yamada, H., Katsumata, Y., Lee, K-H., Araki, K., and Kojima, N.: Efficiency potential and recent activities of high-efficiency solar cells. J. Mater. Res. 32, 3445 (2017).
5.Rau, U.: Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).
6.Green, M.A.: Radiative efficiency of state-of-the-art photovoltaic cells. Prog. Photovoltaics 20, 472 (2012).
7.Yao, J., Kirchartz, T., Vezie, M.S., Faist, M.A., Gong, W., He, Z., Wu, H., Troughion, J., Watson, T., Bryant, D., and Nelson, J.: Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015).
8.Zhao, J., Wang, A., Green, M.A., and Ferrazza, F.: Novel 19.8% efficient “honeycomb” textures multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991 (1998).
9.Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Fujita, K., and Maruyama, E.: 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96 (2014).
10.Nakamura, J., Asano, N., Hieda, T., Okamoto, C., Ohnishi, T., Kobayashi, M., Tadokoro, H., Suganuma, R., Matsumoto, Y., Katayama, H., Higashi, K., Kamikawa, T., Kimoto, K., Harada, M., Sakai, T., Shigeta, H., Kuniyoshi, T., Tsujino, K., Zou, L., Koide, N., and Nakamura, K.: Development of heterojunction back contact Si solar cells. In Proceedings 40th IEEE Photovoltaic Specialists Conference (IEEE, New York, 2014); p. 283.
11.Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., Yamaguchi, T., Ichihashi, Y., Yamanishi, T., Takahama, T., Taguchi, M., Maruyama, E., and Okamoto, S.: Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433 (2014).
12.Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D.: Solar cell efficiency tables (version 48). Prog. Photovoltaics 24, 905 (2016).
13.Yamamoto, K.: 26.33% heterojunction back contact silicon solar cells. In Proceedings of the 7th Workshop on Si Solar Cells (Busan, Korea, November 25, 2016); (KPVS), p. 197.
14.Glunz, S.W., Richter, A., Muller, R., Schindler, F., Hauser, H., Feldmann, F., Krenckel, P., Riepe, S., Benick, J., Schubert, M.C., and Hermle, M.: Multicrystalline silicon solar cells exceeding 22%. In Extended Abstracts of the 27th International Photovoltaic Science and Engineering Conference (Otsu, Japan, November 12–17, 2017); p. 117.
15.Jin, H.: Record efficiency industrial screen-printed multicrystalline silicon solar cell. In Extended Abstracts of the 27th International Photovoltaic Science and Engineering Conference (Otsu, Japan, November 12–17, 2017); p. 153.
16.Green, M.A.: Solar Cells (UNSW, Kensington, 1998).
17.Swanson, R.: Approaching the 29% limit efficiency of silicon solar cells. In Proceedings of the 20th European Photovoltaic Solar Energy Conference (WIP, Munich, 2005); p. 584.
18.Richter, A., Hermle, M., and Glunz, S.W.: Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184 (2013).
19.Dziewior, J. and Schmid, W.: Auger coefficients for highly doped and highly excited silicon. Appl. Phys. Lett. 31, 346 (1977).
20.Richter, A., Glunz, S.W., Werner, F., Schmidt, J., and Cuevas, A.: Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B 86, 165202 (2012).
21.Higasa, M., Nagai, Y., Nakagawa, S., and Kasima, K.: Effect of low carbon concentration on bulk carrier lifetime in MCZ silicon crystal. In Abstract of the 75th Annual Meeting of the Japan Society of Applied Physics, 20a-A20-3 (Sapporo, Japan, 2014).
22.Arafune, K., Sasaki, T., Wakabayashi, F., Terada, Y., Ohshita, Y., and Yamaguchi, M.: Study on defects and impurities in cast-grown polycrystalline silicon substrates for solar cells. Phys. B 376–377, 236 (2006).
23.Arafune, K., Ohishi, E., Sai, H., Ohshita, Y., and Yamaguchi, M.: Directional solidification of polycrystalline silicon ingots by successive relaxation of supercooling method. J. Cryst. Growth 308, 5 (2007).
24.Osaka, J., Inoue, N., and Wada, K.: Homogeneous nucleation of oxide precipitates in Czochralski-grown silicon. Appl. Phys. Lett. 36, 288 (1980).
25.Kishino, S., Matsushita, Y., Kanamori, M., and Iizuka, T.: Thermally induced microdefects in Czochralski-grown silicon: Nucleation and growth behavior. Jpn. J. Appl. Phys. 21, 1 (1982).
26.Shinoyama, S., Hasebe, M., and Yamauchi, T.: Defect formation in the cooling process after CZ-Si growth. Oyo Buturi 60, 766 (1991). (in Japanese).
27.Kakimoto, K., Miyamura, Y., Harada, H., and Nakano, S.: Crystal growth of CZ-Si and relationship between carrier lifetime and defects. In Extended Abstracts of the 2017 International Conference on Solid State Devices and Materials (Sendai, Japan, September 19–22, 2017); p. 119.
28.Masada, I.: Optimization of Solar Cell Material Quality and Characterization of Crystalline Defects in Si: NEDO 2017 Symposium P4–7 (Yokohama, Japan, September 22, 2017).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed