Skip to main content Accessibility help
×
Home

Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation

  • Christopher A. Schuh (a1) and Alan C. Lund (a1)

Abstract

We propose a nucleation theory-based analysis for incipient plasticity during nanoindentation and predict the statistical distribution of rate-dependent pop-in events for many nominally identical indentations on the same surface. In the framework of stress-assisted, thermally activated defect nucleation, we quantitatively rationalize new nanoindentation measurements on 4H SiC and extract the activation volume of the nucleation events that mark the onset of plastic flow. We also illustrate how this statistical approach can differentiate between unique nucleation events for different indenter tip geometries.

Copyright

References

Hide All
1.Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P. and Wyrobek, J.T.: Indentation Induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).
2.Kramer, D.E., Yoder, K.B. and Gerberich, W.W.: Surface constrained plasticity: Oxide Rupture and the yield point process. Philos. Mag. A81, 2033 (2001).
3.Gerberich, W.W., Venkataraman, S.K., Huang, H., Harvey, S.E. and Kohlstedt, D.L.: The injection of plasticity by millinewton contacts. Acta Metall. Mater. 43, 1569 (1995).
4.Field, J.S., Swain, M.V. and Dukino, R.D.: Determination of fracture toughness from the extra penetration produced by indentation-induced pop-in. J. Mater. Res. 18, 1412 (2003).
5.Wright, W.J., Saha, R. and Nix, W.D.: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. JIM. 42, 642 (2001).
6.Greer, A.L., Castellero, A., Madge, S.V., Walker, I.T. and Wilde, J.R. Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater. Sci. Eng. A (2004, in press).
7.Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).
8.Schuh, C.A. and Nieh, T.G.: A survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19, 46 (2004).
9.Chinh, N.Q., Horváth, G., Kovács, Z. and Lendvai, J.: Characterization of plastic instability steps occurring in depth-sensing indentation tests. Mater. Sci. Eng A 324, 219 (2002).
10.Berces, G., Chinh, N.Q., Juhasz, A. and Lendvai, J.: Occurrence of plastic instabilities in dynamic microhardness testing. J. Mater. Res. 13, 1411 (1998).
11.Corcoran, S.G., Colton, R.J., Lilleodden, E.T. and Gerberich, W.W.: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, R16057 (1997).
12.Pang, M., Bahr, D.F. and Lynn, K.G.: Effects of Zn addition and thermal annealing on yield phenomena of CdTe and Cd0.96Zn0.04Te single crystals by nanoindentation. Appl. Phys. Lett. 82, 1200 (2003).
13.Chiu, Y.L. and Ngan, A.H.W.: A TEM investigation on indentation plastic zones in Ni3Al(Cr,B) single crystals. Acta Mater. 50, 2677 (2002).
14.Gouldstone, A., Koh, H-J., Zeng, K-Y., Giannakopoulos, A.E. and Suresh, S.: Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277 (2000).
15.Suresh, S., Nieh, T.G. and Choi, B.W.: Nano-indentation of copper thin films on silicon substrates. Scripta Mater. 41, 951 (1999).
16.Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johansen, H. and Leipner, H.S.: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67, 172101 (2003).
17.Kelchner, C.L., Plimpton, S.J. and Hamilton, J.C.: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998).
18.Gannepalli, A. and Mallapragada, S.K.: Atomistic studies of defect nucleation during nanoindentation of Au(001). Phys. Rev. B 66, 104103 (2002).
19.Knap, J. and Ortiz, M.: Effect of indenter-radius size on Au(001) nanoindentation. Phys. Rev. Lett. 90, 226102 (2003).
20.Lilleodden, E.T., Zimmerman, J.A., Foiles, S.M. and Nix, W.D.: Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51, 901 (2003).
21.Li, J., Van-Vliet, K.J., Zhu, T., Yip, S. and Suresh, S.: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307 (2002).
22.Bahr, D.F., Wilson, D.E. and Crowson, D.A.: Energy considerations regarding yield points during indentation. J. Mater. Res. 14, 2269 (1999).
23.Chiu, Y.L. and Ngan, A.H.W.: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599 (2002).
24.Syed-Asif, S.A. and Pethica, J.B.: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A76, 1105 (1997).
25.Wang, W., Jiang, C.B. and Lu, K.: Deformation behavior of Ni3Al single crystals during nanoindentation. Acta Mater. 51, 6169 (2003).
26.Michalske, T.A. and Houston, J.E.: Dislocation nucleation at nano-scale contacts. Acta Mater. 46, 391 (1998).
27.Kooi, B.J., Poppen, R.J., Carvalho, N.J.M., DeHosson, J.T.M. and Barsoum, M.W.: Ti3SiC2: A damage tolerant ceramic studied with nanoindentations and transmission electron microscopy. Acta Mater. 51, 2859 (2003).
28.Lee, K.S., Park, J.Y., Kim, W-J., Lee, M.Y., Jung, C.H. and Hong, G.W.: Effect of soft substrate on the indentation damage in silicon carbide deposited on graphite. J. Mater. Sci. 35, 2769 (2000).
29.Page, T.F., Oliver, W.C. and McHargue, C.J.: The deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J. Mater. Res. 7, 450 (1992).
30.Pohlmann, K., Bhushan, B. and Gahr, K-H.Z.: Effect of thermal oxidation on indentation and scratching of single-crystal silicon carbide on microscale. Wear 237, 116 (2000).
31.Woirgard, J., Cabioc’h, T., Riviere, J.P. and Dargenton, J.C.: Nanoindentation characterization of SiC coatings prepared by dynamic ion mixing. Surf. Coat. Technol. 100, 128 (1998).
32.Mann, A.B., Balooch, M., Kinney, J.H. and Weihs, T.P.: Radial variations in modulus and hardness in SCS-6 silicon carbide fibers. J. Am. Ceram. Soc. 82, 111 (1999).
33.Johnson, K.L., Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).
34.Mann, A.B. and Pethica, J.B.: The effect of tip momentum on the contact stiffness and yielding during nanoindentation testing. Philos. Mag. A 79, 577 (1999).
35.Mann, A.B. and Pethica, J.B.: The role of atomic size asperities in the mechanical deformation of nanocontacts. Appl. Phys. Lett. 69, 907 (1996).
36.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
37.Green, D.J., An Introduction to the Mechanical Properties of Ceramics (Cambridge University Press, Cambridge, U.K., 1998).
38.Bahr, D.F., Kramer, D.E. and Gerberich, W.W.: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).
39.Tymiak, N.I., Kramer, D.E., Bahr, D.F., Wyrobek, J.T. and Gerberich, W.W.: Plastic strain and strain gradients at very small indentation depths. Acta Mater. 49, 1021 (2001).
40.Golovin, Y.I., Tyurin, A.I. and Farber, B.Y.: Time-dependent characteristics of materials and micromechanisms of plastic deformation on a submicron scale by a new pulse indentation technique. Philos. Mag. A82, 1857 (2002).
41.Farber, B.Y., Orlov, V.I. and Heuer, A.H.: Energy dissipation during high-temperature displacement-sensitive indentation in cubic zirconia single crystal. Phys. Status Solidi A 166, 115 (1998).
42.Golovin, Y.I., Tyurin, A.I. and Farber, B.Y.: Investigation of time-dependent characteristics of materials and micromechanisms of plastic deformation on a submicron scale by a new pulse indentation technique. J. Mater. Sci. 37, 895 (2002).
43.Farber, B.Y., Orlov, V.I., Nykitenko, V.I. and Heuer, A.H.: Mechanisms of energy dissipation during displacement-sensitive indentation in Ge single crystals at elevated temperatures. Philos. Mag. A 78, 671 (1998).
44.Kiely, J.D. and Houston, J.E.: Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B 57, 12588 (1998).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed