Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 90
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Khan, Sajid Ullah Mateen, Abdul and Qazi, Ibrahim 2016. Sol–gel derived lead zirconate titanate: Processing, micrometer and nanometer scale patterning and characterization. Ceramics International, Vol. 42, Issue. 1, p. 185.

    Yeo, Hong Goo Ma, Xiaokun Rahn, Christopher and Trolier-McKinstry, Susan 2016. Efficient Piezoelectric Energy Harvesters Utilizing (001) Textured Bimorph PZT Films on Flexible Metal Foils. Advanced Functional Materials,

    Han, Jingning Zou, Helin Xu, Wencai Wang, Wenhao Liu, Yongli and Zhi, Lisha 2015. Fabrication and characterisation of lead zirconate titanate thin films for microactuators. Micro & Nano Letters, Vol. 10, Issue. 4, p. 213.

    ten Elshof, J.E. 2015. Epitaxial Growth of Complex Metal Oxides.

    Wang, Wenhao Zhi, Lisha Han, Jingning Xu, Wencai Liu, Yongli and Zou, Helin 2015. Effect of Pyrolytic Film Thickness on the Texture Evolution of PZT Thin Films. Integrated Ferroelectrics, Vol. 159, Issue. 1, p. 108.

    Hsiang, Hsing-I Yung, Shi-Wen and Wang, Chung-Ching 2014. Effects of the addition of alumina on the crystallization, densification and dielectric properties of CaO–MgO–Al2O3–SiO2 glass in the presence of ZrO2. Ceramics International, Vol. 40, Issue. 10, p. 15807.

    Schneller, Theodor Majumder, Subhasish B. and Waser, Rainer 2014. Ceramics Science and Technology.

    Ismail, S. M. Labib, Sh. and Attallah, S. S. 2013. Preparation and Characterization of Nano-Cadmium Ferrite. Journal of Ceramics, Vol. 2013, p. 1.

    Nittala, Krishna Mhin, Sungwook Dunnigan, Katherine M. Robinson, Douglas S. Ihlefeld, Jon F. Kotula, Paul G. Brennecka, Geoff L. and Jones, Jacob L. 2013. Phase and texture evolution in solution deposited lead zirconate titanate thin films: Formation and role of the Pt3Pb intermetallic phase. Journal of Applied Physics, Vol. 113, Issue. 24, p. 244101.

    Seifikar, Safoura Calandro, Bridget Rasic, Goran Deeb, Elisabeth Yang, Jijin Bassiri-Gharb, Nazanin Schwartz, Justin and Alford, N. 2013. Optimized Growth of Heteroepitaxial (111) NiFe2O4Thin Films on (0001) Sapphire with Two In-Plane Variants via Chemical Solution Deposition. Journal of the American Ceramic Society, p. n/a.

    Vorotilov, K. Sigov, A. Seregin, D. Podgorny, Yu. Zhigalina, O. and Khmelenin, D. 2013. Crystallization behaviour of PZT in multilayer heterostructures. Phase Transitions, Vol. 86, Issue. 11, p. 1152.

    Calleja, Albert Ricart, Susagna Granados, Xavier Palmer, Xavier Solano, Eduardo Tornero, Jose Antonio Cano, Francesc Puig, Teresa and Obradors, Xavier 2012. Epitaxial BaZrO3 tracks by electrospinning of metalorganic fibers on single crystals. CrystEngComm, Vol. 14, Issue. 14, p. 4686.

    Chilibon, Irinela and Marat-Mendes, José N. 2012. Ferroelectric ceramics by sol–gel methods and applications: a review. Journal of Sol-Gel Science and Technology, Vol. 64, Issue. 3, p. 571.

    Stawski, Tomasz M. Besselink, Rogier Veldhuis, Sjoerd A. Castricum, Hessel L. Blank, Dave H.A. and ten Elshof, Johan E. 2012. Time-resolved small angle X-ray scattering study of sol–gel precursor solutions of lead zirconate titanate and zirconia. Journal of Colloid and Interface Science, Vol. 369, Issue. 1, p. 184.

    Timusk, Martin Järvekülg, Martin Salundi, Aigi Lõhmus, Rünno Leinberg, Silver Kink, Ilmar and Saal, Kristjan 2012. Optical properties of high-performance liquid crystal–xerogel microcomposite electro-optical film. Journal of Materials Research, Vol. 27, Issue. 09, p. 1257.

    Leu, Ching-Chich Hsu, Ching-Pin Hong, Cin-Guan and Hu, Chen-Ti 2011. Photochemical-induced self-seeding effect on lead zirconate titanate thin film. Journal of Materials Chemistry, Vol. 21, Issue. 34, p. 12991.

    Schneller, Theodor Majumder, Subhasish B. and Waser, Rainer 2011. Ceramics Science and Technology.

    Schneller, Theodor Halder, Sandip Waser, Rainer Pithan, Christian Dornseiffer, Jürgen Shiratori, Yosuke Houben, Lothar Vyshnavi, Narayanan and Majumder, Subhasish B. 2011. Nanocomposite thin films for miniaturized multi-layer ceramic capacitors prepared from barium titanate nanoparticle based hybrid solutions. Journal of Materials Chemistry, Vol. 21, Issue. 22, p. 7953.

    Stawski, Tomasz M. Veldhuis, Sjoerd A. Castricum, Hessel L. Keim, Enrico G. Eeckhaut, Guy Bras, Wim Blank, Dave H. A. and ten Elshof, Johan E. 2011. Development of Nanoscale Inhomogeneities during Drying of Sol–Gel Derived Amorphous Lead Zirconate Titanate Precursor Thin Films. Langmuir, Vol. 27, Issue. 17, p. 11081.

    Albiss, Borhan A. and Obaidat, Ihab M. 2010. Applications of YBCO-coated conductors: a focus on the chemical solution deposition method. J. Mater. Chem., Vol. 20, Issue. 10, p. 1836.


Comments on the effects of solution precursor characteristics and thermal processing conditions on the crystallization behavior of sol-gel derived lead zirconate titanate thin films

  • R. W. Schwartz (a1), J. A. Voigt (a1), B. A. Tuttle (a1), D. A. Payne (a2), T. L. Reichert (a1) and R. S. DaSalla (a1)
  • DOI:
  • Published online: 01 January 2011

Lead zirconate titanate (PZT 40/60) thin films were fabricated on electroded silicon wafers using chemical solution deposition. Two different chelating agents, acetic acid and acetylacetone, were used in the synthesis of the precursor solutions. The microstructure of the acetylacetone-derived film was characterized by nucleation at the platinum electrode and a columnar growth morphology (˜100−200 nm lateral grain size). In contrast, the acetic acid-derived film was characterized by both columnar grains nucleated at the electrode, and larger (˜1 μm) grains nucleated at the surface of the film. Using Fourier transform infrared (FTIR) diffuse reflectance spectroscopy, we also noted that the pyrolysis behavior of the films was dependent on the chelating agent employed. The acetylacetone-derived films, which displayed only one nucleation event, were also characterized by a higher pyrolysis temperature than the acetic acid-derived films. Previously, microstructural differences of this nature were attributed to variations in “precursor structure.” In this paper, we discuss an alternative mechanism for the observed microstructural variations in films prepared from different solution precursors. In the model proposed, we discuss how changes in film pyrolysis temperature result in a change in film crystallization temperature, and hence, a change in the effective driving force for crystallization. We show how the change in crystallization driving force is expected to impact the thin film microstructure due to the accompanying variations that occur in the barrier heights for interface (lower electrode) and surface nucleation. A standard approach to nucleation in glasses is used as the basis of the proposed model. Finally, we also discuss how the model can be used to understand the observed effects of heating rate and thickness on the microstructure of solution-derived thin films.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.D. Dimos , S. J. Lockwood , R. W. Schwartz , and M. S. Rodgers , IEEE Trans. on Components, Packaging, and Manufacturing Tech. A 18, 174 (1995).

2.J. F. Scott and C. A. Paz de Araujo , Science 246, 1400 (1989).

3.C. E. Land , J. Am. Ceram. Soc. 71 (11), 905 (1988).

4.R. W. Vest and J. Xu , Ferroelectrics 93, 21 (1989).

7.G. Yi , Z. Wu , and M. Sayer , J. Appl. Phys. 64 (5), 2717 (1988).

8.R. W. Schwartz , B. C. Bunker , D. B. Dimos , R. A. Assink , B. A. Tuttle , D. R. Tallant , and I. A. Weinstock , Integrated Ferro. 2, 243 (1992).

9.C. Chen , D. F. Ryder , Jr., and W. A. Spurgeon , J. Am. Ceram. Soc. 72 (8), 1495 (1989).

10.C. D. E. Lakeman and D. A. Payne , J. Am. Ceram. Soc. 75 (11), 3091 (1992).

11.R. W. Schwartz , T. J. Boyle , S. J. Lockwood , M. B. Sinclair , D. Dimos , and C. D. Buchheit , Integrated Ferro. 7, 259 (1995).

12.K. Kushida , K. R. Udayakumar , S. B. Krupanidhi , and L. E. Cross , J. Am. Ceram. Soc. 76 (5), 1345 (1989).

14.K. Nashimoto and S. Nakamura , Jpn. J. Appl. Phys. 33, Pt. 1, No. 9B, 5147 (1994).

15.S. Ramamurthi and D. A. Payne , J. Am. Ceram. Soc. 73 (8), 2547 (1990).

17.P. R. Coffman and S. K. Dey , J. Sol-Gel Sci. Technol. 1, 251 (1994).

19.R. A. Assink and R. W. Schwartz , Chem. Mater. 5 (4), 511 (1993).

20.R. W. Schwartz , R. A. Assink , D. Dimos , M. B. Sinclair , T. J. Boyle , and C. D. Buchheit , in Ferroelectric Thin Films IV, edited by S. B. Desu , B. A. Tuttle , R. Ramesh , and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), pp. 377387.

21.B. A. Tuttle , J. A. Voigt , D. C. Goodnow , D. L. Lamppa , T. J. Headley , M. O. Eatough , G. Zender , R. D. Nasby , and S. M. Rodgers , J. Am. Ceram. Soc. 76 (6), 1537 (1989).

23.R. W. Schwartz , J. A. Voigt , T. J. Boyle , T. A. Christenson , and C. D. Buchheit , Ceram. Eng. Sci. Proc. 16 (5), 1045 (1995).

26.R. Roy , J. Am. Ceram. Soc. 52, 344 (1969).

28.A. P. Wilkinson , J. S. Speck , A. K. Cheetham , S. Natarajan , and J. M. Thomas , Chem. Mater. 6 (6), 750 (1994).

29.J. A. Voigt , B. A. Tuttle , T. J. Headley , and D. L. Lamppa , in Ferroelectric Thin Films IV, edited by S. B. Desu , B. A. Tuttle , R. Ramesh , and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), pp. 395402.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *