Skip to main content
×
Home

Controlled Growth of Gold Nanoparticles on Silica Nanowires

  • Aaron D. LaLonde (a1), M. Grant Norton (a1), Daqing Zhang (a2), Devananda Gangadean (a2), Abdullah Alkhateeb (a2), Radhakrishnan Padmanabhan (a2) and David N. McIlroy (a2)...
Abstract

Production of gold nanoparticles with the specific goal of particle size control has been investigated by systematic variation of chamber pressure and substrate temperature. Gold nanoparticles have been synthesized on SiO2 nanowires by plasma-enhanced chemical vapor deposition. Determination of particle size and particle size distribution was done using transmission electron microscopy. Average nanoparticle diameters were between 4 and 12 nm, with particle size increasing as substrate temperature increased from 573 to 873 K. A bimodal size distribution was observed at temperatures ≥723 K indicating Ostwald ripening dominated by surface diffusion. The activation energy for surface diffusion of gold on SiO2 was determined to be 10.4 kJ/mol. Particle sizes were found to go through a maximum with increases in chamber pressure. Competition between diffusion within the vapor and dissociation of the precursor caused the pressure effect.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: norton@mme.wsu.edu
References
Hide All
1 ATP Focused Program: Catalysis and Biocatalysis Technologies. (2003, April). Retrieved February 12, 2005, from http://www.atp.nist.gov/atp/focus/cabt.htm.
2 Clean Energy and Nano Catalyst Conference, SRI International, Menlo Park, California. (2004, August). Retrieved February 12, 2005, from http://www.nanoinvestornews.com/.
3Campbell C.T.: The active site in nanoparticle gold catalysis. Science 306, 234 (2004).
4Haruta M.: Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153 (1997).
5Satishkumar B.C., Vogl E.M., Govindaraj A. and Rao C.N.R.: The decoration of carbon nanotubes by metal nanoparticles. J. Phys. D: Appl. Phys. 29, 3173 (1996).
6Jiang L. and Gao L.: Modified carbon nanotubes: An effective way to selective attachment of gold nanoparticles. Carbon 41, 2923 (2003).
7Panigrahi S., Kundu S., Ghosh S.K., Nath S. and Pal T.: General method of synthesis for metal nanoparticles. J. Nanoparticle Res. 6, 411 (2004).
8Taubert A., Wiesler U-M. and Müllen K.: Dendrimer-controlled one-pot synthesis of gold nanoparticles with a bimodal size distribution and their self-assembly in the solid state. J. Mater. Chem. 13, 1090 (2003).
9Schimpf S., Lucas M., Mohr C., Rodemerck U., Brückner A., Radnik J., Hofmeister H. and Claus P.: Supported gold nanoparticles: In-depth catalyst characterization and application in hydrogenation and oxidation reactions. Catal. Today 72, 63 (2002).
10Han L., Wu W., Kirk F.L., Luo J., Maye M.M., Kariuki N.N., Lin Y., Wang C-M. and Zhong C-J.: A direct route toward assembly of nanoparticle-carbon nanotube composite materials. Langmuir 20, 6019 (2004).
11Wang J., Zhu T., Song J. and Liu Z.: Gold nanoparticulate film bound to silicon surface with self-assebled monolayers. Thin Solid Films 327–329, 591 (1998).
12Gutiérrez-Wing C., Ascencio J.A., Perez-Alvarez M., Marin-Almazo M. and Jose-Yacaman M.: On the structure and formation of self-assembled lattices of gold nanoparticles. J. Cluster Sci. 9, 529 (1998).
13Pol V.G., Gedanken A. and Calderon-Moreno J.: Deposition of gold nanoparticles on silica spheres: A sonochemical approach. Chem. Mater. 15, 1111 (2003).
14Ma X., Lun N. and Wen S.: Formation of gold nanoparticles supported on carbon nanotubes by using an electroless plating method. Diamond Relat. Mater. 14, 68 (2005).
15Guczi L., Petö G., Beck A., Frey K., Geszti O., Molnár G. and Daróczi C.: Gold nanoparticles deposited on SiO2/Si(100): Correlation between size, electron structure, and activity in CO oxidation. J. Am. Chem. Soc. 125, 4332 (2003).
16Ivanova S., Petit C. and Pitchon V.: A new preparation method for the formation of gold nanoparticles on an oxide support. Appl. Catal., A: General 267, 191 (2004).
17Magnusson M.H., Deppert K., Malm J-O., Bovin J-O. and Samuelson L.: Gold nanoparticles: Production, reshaping, and thermal charging. J. Nanoparticle Res. 1, 243 (1999).
18Okumura M., Nakamura S., Tsubota S., Nakamura T., Azuma M. and Haruta M.: Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2. Catal. Lett. 51, 53 (1998).
19Hostetler M.J., Wingate J.E., Zhong C-J., Harris J.E., Vachet R.W., Clark M.R., Londono J.D., Green S.J., Stokes J.J., Wignall G.D., Glish G.L., Porter M.D., Evans N.D. and Murray R.W.: Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size. Langmuir 14, 17 (1998).
20Compagnini G., Scalisi A.A., Puglisi O. and Spinella C.: Synthesis of gold colloids by laser ablation in thiol-alkane solutions. J. Mater. Res. 19, 2795 (2004).
21Haruta M.: When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 3, 75 (2003).
22Zhang H-F., Wang C-M., Buck E.C. and Wang L-S.: Synthesis, characterization, and manipulation of helical SiO2 nanosprings. Nano Lett. 3, 577 (2003).
23Barnes M.C., Kim D-Y. and Hwanga N.M.: The mechanism of gold deposition by thermal evaporation. J. Ceram. Proces. Res. 1, 45 (2000).
24Kiely C.J., Fink J., Brust M., Bethell D. and Schiffrin D.J.: Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444 (1998).
25Wynblatt P. and Gjostein N.A.: Particle growth in model supported metal catalysts – I. Theory. Acta Metal. 24, 1165 (1976).
26Wynblatt P.: Particle growth in model supported metal catalysts – II. Comparison of experiment with theory. Acta Metal. 24, 1175 (1976).
27Mitchell C.E.J., Howard A., Carney M. and Egdell R.G.: Direct observation of behaviour of Au nanoclusters on TiO2(110) at elevated temperatures. Surf. Sci. 490, 196 (2001).
28Buffat Ph. and Borel J-P.: Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976).
29Dick K., Dhanasekaran T., Zhang Z. and Meisel D.: Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312 (2002).
30Venables J.A.: Atomic processes in crystal growth. Surf. Sci. 299-300, 798 (1994).
31Parker S.C., Grant A.W., Bondzie V.A. and Campbell C.T.: Island growth kinetics during the vapor deposition of gold onto TiO2(110). Surf. Sci. 441, 10 (1999).
32Raizer Y.P.: Gas Discharge Physics . (Springer-Verlag, Berlin, Germany, 1991), p. 52.
33Ohring M.: Materials Science of Thin Films , 2nd ed. (Academic Press, San Diego, CA, 2002), p. 296.
34LaLonde A.D., Norton M.G., McIlroy D.N., Zhang D., Padmanabhan R., Alkhateeb A., Han H., Lane N. and Holman Z.: Metal coatings on SiC nanowires by plasma-enhanced chemical vapor deposition. J. Mater. Res. 20, 549 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 23 *
Loading metrics...

Abstract views

Total abstract views: 112 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.