Skip to main content

Crack propagation and mechanical properties of electrodeposited nickel with bimodal microstructures in the nanocrystalline and ultrafine grained regime

  • Dominic Rathmann (a1), Michael Marx (a1) and Christian Motz (a1)

The article focuses on the fatigue performance after a moderate heat treatment of nanocrystalline (nc) nickel, which leads to the formation of a bimodal microstructure in the nc to ultrafine grained (ufg) regime. Electrodeposition was used to produce nc macro nickel samples with grain sizes of about 40 nm for mechanical testing. The thermal stability of the material as well as the influence on the mechanical properties and the fatigue crack propagation behavior was investigated. The results of tensile and fatigue tests are discussed in respect to the chosen production method and boundary conditions. In this context, the influence of the bath additives used during the plating process was investigated and rated as the major challenge for a further improvement of the thermal stability and mechanical properties of the material. Finally, a co-deposition of nickel and metal oxides with enhanced thermal stability is presented.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Mathias Göken

Hide All
1. Erb, U.: Electrodeposited nanocrystals: Synthesis, properties and industrial applications. Nanostruct. Mater. 6(5–8), 533 (1995).
2. Ebrahimi, F., Bourne, G., Kelly, M., and Matthews, T.: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11(3), 343 (1999).
3. Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).
4. Shen, Y.F., Xue, W.Y., Wang, Y.D., Liu, Z.Y., and Zuo, L.: Mechanical properties of nanocrystalline nickel films deposited by pulse plating. Surf. Coat. Technol. 202(21), 5140 (2008).
5. Yang, B., Vehoff, H., and Pippan, R.: Overview of the grain size effects on the mechanical and deformation behaviour of electrodeposited nanocrystalline nickel-from nanoindentation to high pressure torsion. Mater. Sci. Forum 633–634(1), 85 (2010).
6. Hahn, E.N. and Meyers, M.A.: Grain-size dependent mechanical behavior of nanocrystalline metals. Mater. Sci. Eng., A 646, 101 (2015).
7. Johnson, W., Doherty, J., Kear, B., and Giamei, A.: Confirmation of sulfur embrittlement in nickel alloys. Scr. Metall. 8, 971974 (1974).
8. Briant, C.: Grain boundary segregation of sulfur in iron. Acta Metall. 33, 12411246 (1985).
9. Cziráki, Á., Gerőcs, I., Tóth-Kádár, E., and Bakonyi, I.: TEM and XRD study of the microstructure of nanocrystalline Ni and Cu prepared by severe plastic deformation and electrodeposition. Nanostruct. Mater. 6(5–8), 547 (1995).
10. Leitner, T., Hohenwarter, A., and Pippan, R.: Revisiting fatigue crack growth in various grain size regimes of Ni. Mater. Sci. Eng., A 646, 294 (2015).
11. Oniciu, L. and Mureşan, L.: Some fundamental aspects of levelling and brightening in metal electrodeposition. J. Appl. Electrochem. 21(7), 565 (1991).
12. Osaka, T.: Effects of saccharin and thiourea on sulfur inclusion and coercivity of electroplated soft magnetic CoNiFe film. J. Electrochem. Soc. 146(9), 3295 (1999).
13. Klement, U., Erb, U., El-Sherik, A., and Aust, K.: Thermal stability of nanocrystalline Ni. Sci. Eng. A 203, 177186 (1995).
14. Tellkamp, V.L., Lavernia, E.J., and Melmed, A.: Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall. Mater. Trans. A 32(9), 2335 (2001).
15. Hosseini-Toudeshky, H. and Jamalian, M.: Simulation of micromechanical damage to obtain mechanical properties of bimodal Al using XFEM. Mech. Mater. 89, 229240 (2015).
16. Höppel, H.W., Korn, M., Lapovok, R., and Mughrabi, H.: Bimodal grain size distributions in UFG materials produced by SPD: Their evolution and effect on mechanical properties. J. Phys.: Conf. Ser. 240, 12147 (2010).
17. Liu, Y.G., Mi, X.D., and Tian, S.F.: Effect of grain size on the fracture toughness of bimodal nanocrystalline materials. Adv. Mater. Res. 936, 400 (2014).
18. Kikuchi, S., Hayami, Y., Ishiguri, T., Guennec, B., Ueno, A., Ota, M., and Ameyama, K.: Effect of bimodal grain size distribution on fatigue properties of Ti–6Al–4V alloy with harmonic structure under four-point bending. Mater. Sci. Eng., A 687, 269275 (2017).
19. Ames, M., Markmann, J., Karos, R., Michels, A., and Tschöpe, A.: Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater. 56, 42554266 (2008).
20. Molodov, D. and Shvindlerman, L.: Impact of grain boundary character on grain boundary kinetics. Z. Metallkd. 94, 11171126 (2003).
21. Kirchheim, R.: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55(15), 5129 (2007).
22. Choi, P., Da Silva, M., Klement, U., Al-Kassab, T., and Kirchheim, R.: Thermal stability of electrodeposited nanocrystalline Co–1.1 at.% P. Acta Mater. 53(16), 4473 (2005).
23. Färber, B., Cadel, E., Menand, A., Schmitz, G., and Kirchheim, R.: Phosphorus segregation in nanocrystalline Ni–3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater. 48(3), 789 (2000).
24. Liu, F. and Kirchheim, R.: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth 264(1–3), 385 (2004).
25. Wimmer, A., Smolka, M., Heinz, W., Detzel, T., Robl, W., Motz, C., Eyert, V., Wimmer, E., Jahnel, F., Treichler, R., and Dehm, G.: Temperature dependent transition of intragranular plastic to intergranular brittle failure in electrodeposited Cu micro-tensile samples. Mater. Sci. Eng., A 618, 398 (2014).
26. Krill, C.E. III, Ehrhardt, H., and Birringer, R.: Thermodynamic stabilization of nanocrystallinity. Z. Metallkd. 96, 11341141 (2005).
27. Rollett, A., Humphreys, F., Rohrer, G., and Hatherly, M.: Recrystallization and related annealing phenomena, 2nd Edition. (Elsevier, Oxford, United Kingdom, 2004).
28. Koch, C.C., Scattergood, R.O., Saber, M., and Kotan, H.: High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies. J. Mater. Res. 28, 17851791 (2013).
29. Morris, D. and Morris, M.: Microstructure and strength of nanocrystalline copper alloy prepared by mechanical alloying. Acta Metall. Mater. 39, 17631770 (1991).
30. Bachmaier, A., Hohenwarter, A., and Pippan, R.: New procedure to generate stable nanocrystallites by severe plastic deformation. Scr. Mater. 61, 10161019 (2009).
31. Bachmaier, A. and Pippan, R.: Generation of metallic nanocomposites by severe plastic deformation. Int. Mater. Rev. 58(1), 41 (2013).
32. Cahn, J.: The impurity-drag effect in grain boundary motion. Acta Metall. 10, 789798 (1962).
33. Lücke, K. and Stüwe, H.: On the theory of impurity controlled grain boundary motion. Acta Metall. 19, 10871099 (1971).
34. Choo, R., Toguri, J., El-Sherik, A., and Erb, U.: Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating. J. Appl. Electrochem. 25, 384403 (1995).
35. Natter, H. and Schmelzer, M.: Nanocrystalline nickel and nickel–copper alloys: Synthesis, characterization, and thermal stability. J. Mater. 13, 11861197 (1998).
36. Natter, H. and Hempelmann, R.: Nanocrystalline copper by pulsed electrodeposition: The effects of organic additives, bath temperature, and pH. J. Phys. Chem. 100(50), 19525 (1996).
37. Klement, U., Oikonomou, C., and Chulist, R.: Influence of additives on texture development of submicro-and nanocrystalline nickel. Mater. Sci. Forum 702, 928931 (2012).
38. Stangl, M., Acker, J., Oswald, S., Uhlemann, M., Gemming, T., Baunack, S., and Wetzig, K.: Incorporation of sulfur, chlorine, and carbon into electroplated Cu thin films. Microelectron. Eng. 84(1), 54 (2007).
39. Oniciu, L. and Mureşan, L.: Some fundamental aspects of levelling and brightening in metal electrodeposition. J. Appl. Electrochem. 21, 565574 (1991).
40. Hibbard, G., Aust, K., Palumbo, G., and Erb, U.: Thermal stability of electrodeposited nanocrystalline cobalt. Scr. Mater. 44(3) (2001).
41. Qian, T., Karaman, I., and Marx, M.: Mechanical properties of nanocrystalline and ultrafine-grained nickel with bimodal microstructure. Adv. Eng. Mater. 16(11), 1323 (2014).
42. Aronson, G. and Ritchie, R.: Optimization of the electrical potential technique for crack growth monitoring in compact test pieces using finite element analysis. J. Test. Eval. 7, 208215 (1979).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 11
Total number of PDF views: 83 *
Loading metrics...

Abstract views

Total abstract views: 288 *
Loading metrics...

* Views captured on Cambridge Core between 26th September 2017 - 24th March 2018. This data will be updated every 24 hours.