Skip to main content Accessibility help

Determination of the individual phase properties from the measured grid indentation data

  • Petr Haušild (a1), Aleš Materna (a1), Lenka Kocmanová (a1) and Jiří Matějíček (a2)


Statistical distribution of grid indentation data measured in multiphase materials can be significantly affected by the presence of an interface between adjacent materials. The influence of an interface on the distribution of measured indentation moduli was therefore characterized in model metal–metal, ceramic–ceramic, and metal-ceramic composites. The change of properties near the interface was simulated by finite element method and experimentally verified by indentation in proximity of the boundary between two phases with distinctly different mechanical properties varying the depth of penetration and the distance from the interface. Subsequently, the conditional probability of measuring near the interface was quantified by beta distribution function with parameters dependent on the size of the volume/area affected by the presence of the interface. Using this approach, the intrinsic properties of the individual materials were successfully extracted from the experimental grid indentation data.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Doerner, M.F. and Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).
2. Menčík, J., Munz, D., Quandt, E., Weppelmann, E.R., and Swain, M.V.: Determination of elastic-modulus of thin-layers using nanoindentation. J. Mater. Res. 12, 2475 (1997).
3. Oliver, W.C. and Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
4. Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
5. ISO 14577-1: Metallic materials - Instrumented indentation test for hardness and materials parameters - Part 1: Test method (ISO 14577-1:2015).
6. Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
7. Constantinides, G., Ravi Chandran, K.S., Ulm, F-J., and Van Vliet, K.J.: Grid indentation analysis of composite microstructure and mechanics: Principles and validation. Mater. Sci. Eng., A 430, 189 (2006).
8. Randall, N.X., Vandamme, M., and Ulm, F-J.: Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces. J. Mater. Res. 24, 679 (2009).
9. Durst, K., Göken, M., and Vehoff, H.: Finite element study for nanoindentation measurements on two-phase materials. J. Mater. Res. 19, 8594 (2004).
10. Haušild, P., Nohava, J., and Pilvin, P.: Characterisation of strain-induced martensite in a metastable austenitic stainless steel by nanoindentation. Strain 47, 129 (2011).
11. Nohava, J., Haušild, P., Houdková, Š., and Enžl, R.: Comparison of isolated indentation and grid indentation methods for HVOF sprayed cermets. J. Therm. Spray Technol. 21, 651 (2012).
12. Vlassak, J.J. and Nix, W.D.: Indentation modulus of elastically anisotropic half spaces. Philos. Mag. A 67, 1045 (1993).
13. Vlassak, J.J. and Nix, W.D.: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223 (1994).
14. Haušild, P., Materna, A., and Nohava, J.: Characterization of anisotropy in hardness and indentation modulus by nanoindentation. Metallogr., Microstruct., Anal. 3, 5 (2014).
15. Materna, A., Haušild, P., and Nohava, J.: A numerical investigation of the effect of cubic crystals orientation on the indentation modulus. Acta Physica Polonica, A 128, 693 (2015).
16. Menčík, J. and Swain, M.V.: Characterisation of materials using micro-indentation tests with pointed indenters. Mater. Forum 18, 277 (1994).
17. Menčík, J. and Swain, M.V.: Errors associated with depth-sensing microindentation tests. J. Mater. Res. 10, 1491 (1995).
18. Fischer-Cripps, A.C.: Nanoindentation, 3rd ed. (Springer, New York, 2011).
19. Hay, J.C., Bolshakov, A., and Pharr, G.M.: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 (1999).
20. Marc 2015: Volume A, Theory and User Information (MSC.Software Corporation, Newport Beach, 2015).
21. Matějíček, J., Nevrlá, B., Čech, J., Vilémová, M., Klevarová, V., and Haušild, P.: Mechanical and thermal properties of individual phases formed in sintered tungsten-steel composites. Acta Physica Polonica, A 128, 718 (2015).
22. Christensen, R.M.: Mechanics of Composite Materials (Wiley, New York, 1979).
23. Lassner, E. and Schubert, W-D.: Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic/Plenum Publishers, New York, 1999).
24. Brožek, V., Ctibor, P., Matějíček, J., Mušálek, R., and Weiss, Z.: Tungsten coatings and free standing parts. In Proc.: Metal 2013, Tanger: Brno, Czech Republic, 2013; p. 6.
25. Shackelford, J.F., and Alexander, W.: CRC Materials Science and Engineering Handbook, 3rd ed. (CRC Press, Boca Raton, 2001).
26. Leisen, D., Kerkamm, I., Bohn, E., and Kamlah, M.: A novel and simple approach for characterizing the Young’s modulus of single particles in a soft matrix by nanoindentation. J. Mater. Res. 27, 3073 (2012).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed