Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 5
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Muñoz-Muñoz, Franklin Soto, Gerardo Domínguez, David Romo-Herrera, José Bedolla-Valdez, Zaira Itzel Alonso-Nuñez, Gabriel Contreras, Oscar Edel and Tiznado, Hugo 2015. The control of thickness on aluminum oxide nanotubes by Atomic Layer Deposition using carbon nanotubes as removable templates. Powder Technology, Vol. 286, p. 602.

    Liu, Zhikun Cao, Zeyuan Deng, Biwei Wang, Yuefeng Shao, Jiayi Kumar, Prashant Liu, C. Richard Wei, Bingqing and Cheng, Gary J. 2014. Ultrafast and scalable laser liquid synthesis of tin oxide nanotubes and its application in lithium ion batteries. Nanoscale, Vol. 6, Issue. 11, p. 5853.

    Rastegar, Somayeh F. Peyghan, Ali Ahmadi and Hadipour, Nasser L. 2013. Response of Si- and Al-doped graphenes toward HCN: A computational study. Applied Surface Science, Vol. 265, p. 412.

    Barth, Sven Jimenez-Diaz, Roman Samà, Jordi Daniel Prades, Joan Gracia, Isabel Santander, Joaquin Cane, Carles and Romano-Rodriguez, Albert 2012. Localized growth and in situ integration of nanowires for device applications. Chemical Communications, Vol. 48, Issue. 39, p. 4734.

    Zhu, Kake Sun, Junming Zhang, He Liu, Jun and Wang, Yong 2012. Carbon as a hard template for nano material catalysts. Journal of Natural Gas Chemistry, Vol. 21, Issue. 3, p. 215.


Direct synthesis of tin oxide nanotubes on microhotplates using carbon nanotubes as templates

  • Prahalad Parthangal (a1), Richard E. Cavicchi (a2), Douglas C. Meier (a2), Andrew Herzing (a2) and Michael R. Zachariah (a3)
  • DOI:
  • Published online: 11 January 2011

Tin oxide (SnO2) nanotubes have been synthesized using carbon nanotubes (CNTs) as removable templates. The entire synthesis takes place on the microscale on a micromachined hotplate, without the use of photolithography, taking advantage of the device’s built-in heater. Well-aligned multiwalled CNT forests were grown directly on microhotplates at 600 °C using a bimetallic iron/alumina composite catalyst and acetylene as precursor. Thin films of anhydrous SnO2 were then deposited onto the CNT forests through chemical vapor deposition of tin nitrate at 375 °C. The CNTs were then removed through a simple anneal process in air at temperatures above 450 °C, resulting in SnO2 nanotubes. Gas sensing measurements indicated a substantial improvement in sensitivity to trace concentrations of methanol from the SnO2 nanotubes in comparison with a SnO2 thin film. The synthesis technique is generic and may be used to create any metal oxide nanotube structure directly on microscale substrates.

Corresponding author
a)Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.J. Suehle , R.E. Cavicchi , M. Gaitan , and S. Semancik : Tin oxide gas sensor fabricated using CMOS micro-hotplates and in-situ processing. IEEE Electron Device Lett. 14, 118 (1993).

2.P.B. Weisz : Effects of electronic change transfer between adsorbate and solid on chemisorption and catalysis. J. Chem. Phys. 21, 1531 (1953).

3.J.F. McAleer , P.T. Moseley , J.O.W. Noris , D.E. Williams , and B.C. Tofield : Tin dioxide gas sensors. Part 1: Aspects of the surface chemistry revealed by electrical conductance variations. J. Chem. Soc., Faraday Trans. 1 F 83, 1323 (1987).

4.P.T. Moseley : Solid state gas sensors. Meas. Sci. Technol. 8, 223 (1997).

5.W.Y. Chung , J.W. Lim , D.D. Lee , N. Miura , and N. Yamazoe : Thermal and gas-sensing properties of planar-type micro gas sensor. Sens. Actuators, B 64, 118 (2000).

6.H. Ogawa , M. Nishikawa , and A. Abe : Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J. Appl. Phys. 53, 4448 (1982).

7.A. Kolmakov , Y. Chang , G. Cheng , and M. Moskovits : Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 15, 997 (2003).

9.D. Zhang , Z. Liu , C. Li , T. Tang , X. Liu , S. Han , B. Lei , and C. Zhou : Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919 (2004).

11.P.M. Parthangal , R.E. Cavicchi , and M.R. Zachariah : A universal approach to electrically connecting nanowire arrays using nanoparticles-application to a novel gas sensor architecture. Nanotechnology 17, 3786 (2006).

12.E. Comini , G. Faglia , G. Sberveglieri , Z. Pan , and Z.L. Wang : Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002).

13.Y.X. Liang , Y.J. Chen , and T.H. Wang : Low-resistance gas sensors fabricated from multiwalled carbon nanotubes coated with a thin tin oxide layer. Appl. Phys. Lett. 85, 666 (2004).

14.Y. Zhang , J. Liu , R. He , Q. Zhang , X. Zhang , and J. Zhu : Synthesis of alumina nanotubes using carbon nanotubes as templates. Chem. Phys. Lett. 360, 579 (2002).

15.Z. Sun , H. Yuan , Z. Liu , B. Han , and X. Zhang : A highly efficient chemical sensor material for H2S: Alpha-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater. 17, 2993 (2005).

18.W.Q. Han and A. Zettl : Coating single-walled carbon nanotubes with tin oxide. Nano Lett. 3, 681 (2003).

19.L. Fu , Z. Liu , Y. Liu , B. Han , J. Wang , P. Hu , L. Cao , and D. Zhu : Coating carbon nanotubes with rare earth oxide multiwalled nanotubes. Adv. Mater. 16, 350 (2004).

20.Y.S. Min , E.J. Bae , K.S. Jeong , Y.J. Cho , J.H. Lee , W.B. Choi , and G.S. Park : Ruthenium oxide nanotube arrays fabricated by atomic layer deposition using a carbon nanotube template. Adv. Mater. 15, 1019 (2003).

21.A. Gomathi , S.R.C. Vivekchand , A. Govindaraj , and C.N.R. Rao : Chemically bonded ceramic oxide coatings on carbon nanotubes and inorganic nanowires. Adv. Mater. 17, 2757 (2005).

22.N.D. Hoa , N. Van Quy , H. Song , Y. Kang , Y. Cho , and D. Kim : Tin oxide nanotube structures synthesized on a template of single-walled carbon nanotubes. J. Cryst. Growth 311, 657 (2009).

23.Y. Jia , L. He , Z. Guo , X. Chen , F. Meng , T. Luo , M. Li , and J. Liu : Preparation of porous tin oxide nanotubes using carbon nanotubes as templates and their gas-sensing properties. J. Phys. Chem. C 113(22), 9581 (2009).

24.P.M. Parthangal , R.E. Cavicchi , and M.R. Zachariah : A generic process of growing aligned carbon nanotube arrays on metals and metal alloys. Nanotechnology 18, 185605 (2007).

25.R.E. Cavicchi , S. Semancik , F. DiMeo , and C.J. Taylor : Featured article: Use of microhotplates in the controlled growth characterization of metal oxides for chemical sensing. J. Electroceram. 9, 155 (2003).

26.L. Gajdosik : The derivation of the electrical conductance/concentration dependency for SnO2 gas sensor for ethanol. Sens. Actuators, B 81, 347 (2002).

27.A. Kolmakov : Some recent trends in the fabrication, functionalisation and characterisation of metal oxide nanowire gas sensors. Int. J. Nanotechnol. 5(4/5), 450 (2008).

29.W.K. Choi , H.J. Jung , and S-K.J. Koh : Chemical shifts and optical properties of tin oxide films grown by a reactive ion-assisted deposition. J. Vac. Sci. Technol., A 14, 359 (1996).

31.T. Sahma , L. Mädler , A. Gurlo , N. Barsan , S.E. Pratsinis , and U. Weimar : Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sens. Actuators, B 98, 148 (2004).

32.C. Nayral , E. Viala , P. Fau , F. Senocq , J.C. Jumas , and A. Maisonnat : Synthesis of tin and tin oxide nanoparticles of low size dispersity for application in gas sensing. Chemistry 6, 4082 (2000).

34.S. Chakraborty , A. Sen , and H.S. Maiti : Selective detection of methane and butane by temperature modulation in iron doped tin oxide sensors. Sens. Actuators, B 115, 610 (2006).

35.G.G. Mandayo , E. Castano , F.J. Gracia , A. Cirera , A. Cornet , and J.R. Morante : Enhancement of hydrogen gas-sensing properties of SnO2-based thin film with Ni surface modification. Sens. Actuators, B 95, 90 (2003).

36.R.S. Niranjan , S.R. Sainkar , K. Vijayamohanan , and I.S. Mulla : Ruthenium: Tin oxide thin film as a highly selective hydrocarbon sensor. Sens. Actuators, B 82, 82 (2002).

37.J. Tiffany , R.E. Cavicchi , and S. Semancik : Microarray study of temperature dependent sensitivity and selectivity of metal/oxide sensing interfaces, in Advanced Environmental and Chemical Sensing Technology, Vol. 4205, edited by T. VoDinh and S. Buttgenbach (SPIE-International Society for Optical Engineering, Bellingham, WA, 2001), p. 240.

38.J.C. Kim , H.K. Jun , J.S. Huh , and D.D. Lee : Tin oxide-based methane gas sensor promoted by alumina-supported Pd catalyst. Sens. Actuators, B 45, 271 (1997).

39.C. Cane , I. Gracia , A. Gotz , L. Fonseca , E. Lora-Tamayo , M.C. Horrillo , I. Sayago , J.I. Robla , J. Rodrigo , and J. Gutierrez : Detection of gases with arrays of micromachined tin oxide gas sensors. Sens. Actuators, B 65, 244 (2000).

40.B.K. Dable , K.S. Booksh , R.E. Cavicchi , and S. Semancik : Calibration of microhotplate conductometric gas sensors by non-linear multivariate regression methods. Sens. Actuators, B 101, 284 (2004).

41.R.E. Cavicchi , J.S. Suehle , K.G. Kreider , M. Gaitan , and P. Chaparala : Fast temperature programmed sensing for micro-hotplate gas sensors. IEEE Electron Device Lett. 16, 286 (1995).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *