Skip to main content
×
Home
    • Aa
    • Aa

Compressive properties of Al-A206/SiC and Mg-AZ91/SiC syntactic foams

  • Gonzalo Alejandro Rocha Rivero (a1), Benjamin Franklin Schultz (a1), J.B. Ferguson (a1), Nikhil Gupta (a2) and Pradeep Kumar Rohatgi (a3)...
Abstract
Abstract

Metal matrix syntactic foams are promising materials with high energy absorption capability. To study the effects of matrix strength on the quasistatic compressive properties of syntactic foams using SiC hollow particles as reinforcement, matrices of Al-A206 and Mg-AZ91 were used. Because Al-A206 is a heat-treatable alloy, matrix strength can be varied by heat treatment conditions, and foams in as-cast, T4, and T7 conditions were tested in this study. It is shown that the peak strength, plateau strength, and toughness of the foams increase with increasing yield strength of the matrix and that these foams show better performance than other foams on a specific property basis. High strain rate testing of the Mg-AZ91/SiC syntactic foams showed that there was little strain rate dependence of the peak stress under strain rates ranging from 10−3/s to 726/s.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: bfs2@uwm.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A.G. Evans , J.W. Hutchinson , and M.F. Ashby : Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43, 171 (1999).

Y. Chino and D.C. Dunand : Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56, 105 (2008).

D.K. Balch , J.G. O'Dwyer , G.R. Davis , C.M. Cady , G.T. Gray III, and D.C. Dunand : Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions. Mater. Sci. Eng., A. 391, 408 (2005).

D.K. Balch and D.C. Dunand : Load partitioning in aluminum syntactic foams containing ceramic microspheres. Acta Mater. 54, 1501 (2006).

G.H. Wu , Z.Y. Dou , D.L. Sun , L.T. Jiang , B.S. Ding , and B.F. He : Compression behaviors of cenosphere-pure aluminum syntactic foams. Scr. Mater. 56, 221 (2007).

Q. Zhang , P.D. Lee , R. Singh , G. Wu , and T.C. Lindley : Micro-CT characterization of structural features and deformation behavior of fly ash/aluminum syntactic foam. Acta Mater. 57, 3003 (2009).

X.F. Tao , L.P. Zhang , and Y.Y. Zhao : Al matrix syntactic foam fabricated with bimodal ceramic microspheres. Mater. Des. 30, 2732 (2009).

X.F. Tao and Y.Y. Zhao : Compressive behavior of Al matrix syntactic foams toughened with Al particles. Scr. Mater. 61, 461 (2009).

I.N. Orbulov and J. Dobránszky : Producing metal matrix syntactic foams by pressure infiltration. Period. Polytech. Mech. Eng. 52, 35 (2008).

I.N. Orbulov and J. Ginsztler : Compressive characteristics of metal matrix syntactic foams. Composites Part A 43, 553 (2012).

R.A. Palmer , K. Gao , T.M. Doan , L. Green , and G. Cavallaro : Pressure infiltrated syntactic foams-process development and mechanical properties. Mater. Sci. Eng., A. 464, 85 (2007).

Z.Y. Dou , L.T. Jiang , G.H. Wu , Q. Zhang , Z.Y. Xiu , and G.Q. Chen : High strain rate compression of cenosphere-pure aluminum syntactic foams. Scr. Mater. 57, 945 (2007).

P.K. Rohatgi , J.K. Kim , N. Gupta , S. Alaraj , and A. Daoud : Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. Composites Part A 37, 430 (2006).

L.P. Zhang and Y.Y. Zhao : Mechanical response of Al matrix syntactic foams produced by pressure infiltration casting. J. Compos. Mater. 41, 2105 (2007).

M. Kiser , M.Y. He , and F.W. Zok : The mechanical response of ceramic microballoon reinforced aluminum matrix composites under compressive loading. Acta Mater. 47, 2685 (1999).

D.D. Luong , O.M. Strbik III, V.H. Hammond , N. Gupta , and K. Cho : Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization of quasi-static and high strain rates. J. Alloys Compd. 550, 412 (2013).

J. Weise , V. Zanetti-Bueckmann , O. Yezerska , M. Schneider , and M. Haesche : Processing, properties and coating of micro-porous syntactic foams. Adv. Eng. Mater. 9, 52 (2007).

A. Daoud , M.T. Abou El-khair , M. Abdel-Aziz , and P. Rohatgi : Fabrication, microstructure and compressive behavior of ZC63 Mg-microballoon foam composites. Compos. Sci. Technol. 67, 1842 (2007).

A. Daoud : Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting. Mater. Sci. Eng., A. 488, 281 (2008).

D.P. Mondal , J.D. Majumder , N. Jha , A. Badkul , S. Das , A. Patel , and G. Gupta : Titanium-cenosphere syntactic foam made through powder metallurgy route. Mater. Des. 34, 82 (2012).

L.J. Vendra , and A. Rabiei : A study on aluminum-steel composite metal foam processed by casting. Mater. Sci. Eng., A. 465, 59 (2007).

A. Rabiei and L.J. Vendra : A comparison of composite metal foam’s properties and other comparable metal foams. Mater. Lett. 63, 533 (2009).

B.P. Neville and A. Rabiei : Composite metal foams processed through powder metallurgy. Mater. Des. 29, 388 (2008).

G. Castro and S.R. Nutt : Synthesis of syntactic steel foam using mechanical pressure infiltration. Mater. Sci. Eng., A. 535, 274 (2012).

L. Peroni , M. Scapin , M. Avalle , J. Weise , and D. Lehmhus : Dynamic mechanical behavior of syntactic iron foams with glass microspheres. Mater. Sci. Eng., A. 552, 364 (2012).

A. Mortensen and I. Jin : Solidification processing of metal matrix composites. Int. Mater. Rev. 37, 101 (1992).

C. San Marchi , F. Cao , M. Kouzeli , and A. Mortensen : Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum. Mater. Sci. Eng., A 337, 202 (2002).

K. Ishikawa , H. Watanabe , and T. Mukai : High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures. Mater. Lett. 59, 1511 (2005).

T. Mukai , H. Kanahashi , Y. Yamada , K. Shimojima , M. Mabuchi , T.G. Nieh , and K. Higashi : Dynamic compressive behavior of an ultra-lightweight magnesium foam. Scr. Mater. 41, 365 (1999).

N. Gupta , D.D. Luong , and P.K. Rohatgi : A method for intermediate strain rate compression testing and study of compressive failure mechanism of Mg-Al-Zn alloy. J. Appl. Phys. 109, 103512 (2011).

M. Talamantes-Silva , A. Rodríguez , J. Talamantes-Silva , S. Valtierra , and R. Colás : Effect of solidification rate and heat treating on the microstructure and tensile behavior of an aluminum-copper alloy. Metall. Mater. Trans. B 39, 911 (2008).

A. Srinivasa , J. Swaminathan , M.K. Gunjan , U.T.S. Pillai , and B.C. Pai : Effect of intermetallic phases on the creep behavior of AZ91 magnesium alloy. Mater. Sci. Eng., A 527, 1395 (2010).

A. Ureña , J.M. Gómez de Salazar , L. Gil , M.D. Escalera , and J.L. Baldonedo : Scanning and transmission electron microscopy study of the microstructural changes occuring in aluminum matrix composites reinforced with SiC particles during casting and welding: interface reactions. J. Microsc. 196, 124 (1999).

A. Luo : Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites. Metall. Mater. Trans. A. 26, 2445 (1995).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: