Skip to main content
×
Home
    • Aa
    • Aa

In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view

  • Chong-Min Wang (a1)
Abstract
Abstract

Since the advent of the transmission electron microscope (TEM), continuing efforts have been made to image material under native and reaction environments that typically involve liquids, gases, and external stimuli. With the advances of aberration-corrected TEM for improving the imaging resolution, steady progress has been made on developing methodologies that allow imaging under dynamic operating conditions, or in situ TEM imaging. The success of in situ TEM imaging is closely associated with advances in microfabrication techniques that enable manipulation of nanoscale objects around the objective lens of the TEM. This study summarizes and highlights recent progress involving in situ TEM studies of energy storage materials, especially rechargeable batteries. The study is organized to cover both the in situ TEM techniques and the scientific discoveries made possible by in situ TEM imaging.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: Chongmin.Wang@pnnl.gov
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. Haider , S. Uhlemann , E. Schwan , H. Rose , B. Kabius , and K. Urban : Electron microscopy image enhanced. Nature 392(6678), 768 (1998).

O.L. Krivanek , N. Dellby , and A.R. Lupini : Towards sub-angstrom electron beams. Ultramicroscopy 78, 1 (1999).

O.L. Krivanek , P.D. Nellist , N. Dellby , M.F. Murfitt , and Z. Szilagyi : Towards sub-0.5 Å electron beams. Ultramicroscopy 96, 229 (2003).

H. Mueller , S. Uhlemann , P. Hartel , and M. Haider : Advancing the hexapole Cs-corrector for the scanning transmission electron microscope. Microsc. Microanal. 12, 442 (2006).

P.E. Batson , N. Dellby , and O.L. Krivanek : Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617 (2002).

H. Sawada , F. Hosokawa , T. Kaneyama , T. Ishizawa , M. Terao , M. Kawazoe , T. Sannomiya , T. Tomita , Y. Kondo , T. Tanaka , Y. Oshima , Y. Tanishiro , N. Yamamoto , and K. Takayanagi : Achieving 63 pm resolution in scanning transmission electron microscope with spherical aberration corrector. Jpn. J. Appl. Phys. 46, L568 (2007).

K.W. Urban : Is science prepared for atomic resolution electron microscopy? Nat. Mater. 8, 260 (2009).

O.L. Krivanek , G.J. Corbin , N. Dellby , B.F. Elston , R.J. Keyse , M.F. Murfitt , C.S. Own , Z.S. Szilagyi , and J.W. Woodruff : An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179 (2007).

D.A. Muller , L. Fitting Kourkoutis , M.F. Murfitt , J.H. Song , H.Y. Hwang , J. Silcox , N. Dellby , and O.L. Krivanek : Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073 (2008).

D.A. Muller : Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8, 263 (2009).

C.L. Jia , M. Lentzen , and K. Urban : Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870 (2003).

P.D. Nellist and S.J. Pennycook : Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413 (1996).

C-L. Jia , S-B. Mi , K. Urban , I. Vrejoiu , M. Alexe , and D. Hesse : Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Μater. 7, 57 (2008).

A.R. Harutyunyan , G.G. Chen , T.M. Paronyan , E.M. Pigos , O.A. Kuznetsov , K. Hewaparakrama , S.M. Kim , D. Zakharov , E.A. Stach , and G.U. Sumanasekera : Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326, 116 (2009).

B.J. Kim , J. Tersoff , S. Kodambaka , M.C. Reuter , E.A. Stach , and F.M. Ross : Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science 322, 1070 (2008).

P.L. Hansen , J.B. Wagner , S. Helveg , J.R. Rostrup-Nielsen , B.S. Clausen , and H. Topsoe : Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053 (2002).

P. Nolte , A. Stierle , N.Y. Jin-Phillipp , N. Kasper , T.U. Schulli , and H. Dosch : Shape changes of supported Rh nanoparticles during oxidation and reduction cycles. Science 321, 1654 (2008).

H. Yoshida , Y. Kuwauchi , J.R. Jinschek , K. Sun , S. Tanaka , M. Kohyama , S. Shimada , M. Haruta , and S. Takeda : Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317 (2012).

Z.W. Shan , R.K. Mishra , S.A.S. Asif , O.L. Warren , and A.M. Minor : Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).

A.M. Minor , S.A.S. Asif , Z.W. Shan , E.A. Stach , E. Cyrankowski , T.J. Wyrobek , and O.L. Warren : A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 5, 697 (2006).

H.M. Zheng , R.K. Smith , Y.W. Jun , C. Kisielowski , U. Dahmen , and A.P. Alivisatos : Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309 (2009).

H.G. Liao , L.K. Cui , S. Whitelam , and H.M. Zheng : Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011 (2012).

D. Li , M.H. Nielsen , J.R.I. Lee , C. Frandsen , J.F. Banfield , and J.J. De Yoreo : Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014 (2012).

M.J. Williamson , R.M. Tromp , P.M. Vereecken , R. Hull , and F.M. Ross : Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2, 532 (2003).

N. de Jonge , D.B. Peckys , G.J. Kremers , and D.W. Piston : Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. 106, 2159 (2009).

B. Kang and G. Ceder : Battery materials for ultrafast charging and discharging. Nature 458, 190 (2009).

B. Scrosati : Challenge of portable power. Nature 373, 557 (1995).

J.M. Tarascon and M. Armand : Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).

M. Gu , I. Belharouak , A. Genc , Z. Wang , D. Wang , K. Amine , F. Gao , G. Zhou , S. Thevuthasan , D.R. Baer , J-G. Zhang , N.D. Browning , J. Liu , and C. Wang : Conflicting roles of nickel in controlling cathode performance in lithium ion batteries. Nano Lett. 12, 5186 (2012).

R. Retoux , T. Brousse , and D.M. Schleich : High-resolution electron microscopy investigation of capacity fade in SnO2 electrodes for lithium-ion batteries. J. Electrochem. Soc. 146, 2472 (1999).

C. Delmas , M. Maccario , L. Croguennec , F.L. Cras , and F. Weill : Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7, 665 (2008).

G.Y. Chen , X.Y. Song , and T.J. Richardson : Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid State Lett. 9, A295 (2006).

L. Laffont , C. Delacourt , P. Gibot , M.Y. Wu , P. Kooyman , C. Masquelier , and J. Marie Tarascon : Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 18, 5520 (2006).

J. Graetz , C.C. Ahn , R. Yazami , and B. Fultz : An electron energy-loss spectroscopy study of charge compensation in LiNi0.8Co0.2O2. J. Phys. Chem. B 107, 2887 (2003).

Y.S. Meng , G. Ceder , C.P. Grey , W.S. Yoon , M. Jiang , J. Greger , and Y. Shao-Horn : Cation ordering in layered O3 Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 = x = 1/2) compounds. Chem. Mater. 17, 2386 (2005).

S.W. Lee , M.T. McDowell , J.W. Choi , and Y. Cui : Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 11, 3034 (2011).

H. Bryngelsson , M. Stjerndahl , T. Gustafsson , and K. Edstrom : How dynamic is the SEI?. J. Power Sources 174, 970 (2007).

S.K. Eswaramoorthy , J.M. Howe , and G. Muralidharan : In-situ determination of the nanoscale chemistry and behavior of solid-liquid systems. Science 318, 1437 (2007).

R. Dedryvere , H. Martinez , S. Leroy , D. Lemordant , F. Bonhomme , P. Biensan , and D. Gonbeau : Surface film formation on electrodes in a LiCoO2/graphite gell: A step by step XPS study. J. Power Sources 174, 462 (2007).

S.I. Nishimura , G. Kobayashi , K. Ohoyama , R. Kanno , M. Yashima , and A. Yamada : Experimental visualization of lithium diffusion in LixFePO4. Nat. Mater. 7, 707 (2008).

V. Mauchamp , P. Moreau , L. Moncondut , M.L. Doublet , F. Boucher , and G. Ouvrard : Determination of lithium insertion sites in LixTiP4 (x= 2-11) by electron energy-loss spectroscopy. J. Phys. Chem. C 111, 3996 (2007).

A. Brazier , L. Dupont , L. Dantras-Laffront , N. Kuwata , J. Kawamura , and J.M. Tarascon : First cross-section observation of an all solid-state lithium-ion “nanobattery” by transmission electron microscopy. Chem. Mater. 20, 2352 (2008).

A. Lewandowski and A. Świderska-Mocek : Properties of the graphite-lithium anode in N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide as an electrolyte. J. Power Sources 171, 938 (2007).

K. Yamamoto , Y. Iriyama , T. Asaka , T. Hirayama , H. Fujita , C.A.J. Fisher , K. Nonaka , Y. Sugita , and Z. Ogumi : Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem., Int. Ed. 49, 4414 (2010).

C.M. Wang , W. Xu , J. Liu , J.G. Zhang , L.V. Saraf , B.W. Arey , D.W. Choi , Z.G. Yang , J. Xiao , S. Thevuthasan , and D.R. Baer : In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation. Nano Lett. 11, 1874 (2011).

M. Klett , M. Giesecke , A. Nyman , F. Hallberg , R.W. Lindstrom , G. Lindbergh , and I. Furo : Quantifying mass transport during polarization in a li ion battery electrolyte by in situ Li-7 NMR imaging. J. Am. Chem. Soc. 134, 14654 (2012).

J. Wang , Y-C.K. Chen-Wiegart , and J. Wang : In situ chemical mapping of a lithium-ion battery using full-field hard x-ray spectroscopic imaging. Chem. Commun. 49, 6480 (2013).

I.T. Lucas , E. Pollak , and R. Kostecki : In situ AFM studies of SEI formation at a Sn electrode. Electrochem. Commun. 11, 2157 (2009).

S.F. Lux , I.T. Lucas , E. Pollak , S. Passerini , M. Winter , and R. Kostecki : The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem. Commun. 14, 47 (2012).

P. Novak , D. Goers , L. Hardwick , M. Holzapfel , W. Scheifele , J. Ufhiel , and A. Wursig : Advanced in situ characterization methods applied to carbonaceous materials. J. Power Sources 146, 15 (2005).

J.Y. Huang , L. Zhong , C.M. Wang , J.P. Sullivan , W. Xu , L.Q. Zhang , S.X. Mao , N.S. Hudak , X.H. Liu , A. Subramanian , H.Y. Fan , L.A. Qi , A. Kushima , and J. Li : In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515 (2010).

M.T. McDowell , I. Ryu , S.W. Lee , C. Wang , W.D. Nix , and Y. Cui : Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24, 6034 (2012).

X.H. Liu , J.W. Wang , S. Huang , F. Fan , X. Huang , Y. Liu , S. Krylyuk , J. Yoo , S.A. Dayeh , A.V. Davydov , S.X. Mao , S.T. Picraux , S. Zhang , J. Li , T. Zhu , and J.Y. Huang : In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7, 749 (2012).

X.H. Liu , L.Q. Zhang , L. Zhong , Y. Liu , H. Zheng , J.W. Wang , J-H. Cho , S.A. Dayeh , S.T. Picraux , J.P. Sullivan , S.X. Mao , Z.Z. Ye , and J.Y. Huang : Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 11, 2251 (2011).

C-M. Wang , X. Li , Z. Wang , W. Xu , J. Liu , F. Gao , L. Kovarik , J-G. Zhang , J. Howe , D.J. Burton , Z. Liu , X. Xiao , S. Thevuthasan , and D.R. Baer : In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett. 12, 1624 (2012).

H. Ghassemi , M. Au , N. Chen , P.A. Heiden , and R.S. Yassar : In-situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods. ACS Nano 5, 7805 (2011).

D.J. Miller , C. Proff , J.G. Wen , D.P. Abraham , and J. Bareño : Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy. Adv. Energy Mater. 3, 1098 (2013).

F. Wang , H-C. Yu , M-H. Chen , L. Wu , N. Pereira , K. Thornton , A. Van der Ven , Y. Zhu , G.G. Amatucci , and J. Graetz : Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 3, 1201 (2012).

L.Q. Mai , Y.J. Dong , L. Xu , and C.H. Han : Single nanowire electrochemical devices. Nano Lett. 10, 4273 (2010).

H. Ghassemi , M. Au , N. Chen , P.A. Heiden , and R.S. Yassar : Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery. Appl. Phys. Lett. 99, 123113 (2011).

M. Gu , Y. Li , X. Li , S. Hu , X. Zhang , W. Xu , S. Thevuthasan , D.R. Baer , J-G. Zhang , J. Liu , and C. Wang : In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 6, 8439 (2012).

H. Yang , S. Huang , X. Huang , F. Fan , W. Liang , X.H. Liu , L-Q. Chen , J.Y. Huang , J. Li , T. Zhu , and S. Zhang : Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 12, 1953 (2012).

X.H. Liu , L. Zhong , S. Huang , S.X. Mao , T. Zhu , and J.Y. Huang : Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522 (2012).

X.H. Liu , S. Huang , S.T. Picraux , J. Li , T. Zhu , and J.Y. Huang : Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: An in situ transmission electron microscopy study. Nano Lett. 11, 3991 (2011).

Y. Liu , N.S. Hudak , D.L. Huber , S.J. Limmer , J.P. Sullivan , and J.Y. Huang : In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation–delithiation cycles. Nano Lett. 11, 4188 (2011).

L.Q. Zhang , X.H. Liu , Y-C. Perng , J. Cho , J.P. Chang , S.X. Mao , Z.Z. Ye , and J.Y. Huang : Direct observation of Sn crystal growth during the lithiation and delithiation processes of SnO2 nanowires. Micron 43, 1127 (2012).

L. Zhong , X.H. Liu , G.F. Wang , S.X. Mao , and J.Y. Huang : Multiple-stripe lithiation mechanism of individual SnO2 nanowires in a flooding geometry. Phys. Rev. Lett. 106, 248302 (2011).

A. Kushima , X.H. Liu , G. Zhu , Z.L. Wang , J.Y. Huang , and J. Li : Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett. 11, 4535 (2011).

X.H. Liu , J.W. Wang , Y. Liu , H. Zheng , A. Kushima , S. Huang , T. Zhu , S.X. Mao , J. Li , S. Zhang , W. Lu , J.M. Tour , and J.Y. Huang : In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons. Carbon 50, 3836 (2012).

Q.Q. Li , P. Wang , Q. Feng , M.M. Mao , J.B. Liu , S.X. Mao , and H.T. Wang : In situ TEM on the reversibility of nanosized Sn anodes during the electrochemical reaction. Chem. Mater. 26, 4102 (2014).

Y. Liu , H. Zheng , X.H. Liu , S. Huang , T. Zhu , J. Wang , A. Kushima , N.S. Hudak , X. Huang , S. Zhang , S.X. Mao , X. Qian , J. Li , and J.Y. Huang : Lithiation-induced embrittlement of multiwalled carbon nanotubes. ACS Nano 5, 7245 (2011).

M.M. Islam and T. Bredow : Density functional theory study for the stability and ionic conductivity of Li2O surfaces. J. Phys. Chem. C 113, 672 (2009).

X.H. Liu , H. Zheng , L. Zhong , S. Huang , K. Karki , L.Q. Zhang , Y. Liu , A. Kushima , W.T. Liang , J.W. Wang , J-H. Cho , E. Epstein , S.A. Dayeh , S.T. Picraux , T. Zhu , J. Li , J.P. Sullivan , J. Cumings , C. Wang , S.X. Mao , Z.Z. Ye , S. Zhang , and J.Y. Huang : Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312 (2011).

J.E. Evans , K.L. Jungjohann , N.D. Browning , and I. Arslan : Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11, 2809 (2011).

L.R. Parent , D.B. Robinson , T.J. Woehl , W.D. Ristenpart , J.E. Evans , N.D. Browning , and I. Arslan : Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano 6, 3589 (2012).

K.L. Jungjohann , S. Bliznakov , P.W. Sutter , E.A. Stach , and E.A. Sutter : In situ liquid cell electron microscopy of the solution growth of Au–Pd core–shell nanostructures. Nano Lett. 13, 2964 (2013).

T.J. Woehl , J.E. Evans , I. Arslan , W.D. Ristenpart , and N.D. Browning : Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6, 8599 (2012).

N. de Jonge and F.M. Ross : Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695 (2011).

T.J. Woehl , C. Park , J.E. Evans , I. Arslan , W.D. Ristenpart , and N.D. Browning : Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate. Nano Lett. 14, 373 (2013).

X. Chen , K.W. Noh , J.G. Wen , and S.J. Dillon : In situ electrochemical wet cell transmission electron microscopy characterization of solid–liquid interactions between Ni and aqueous NiCl. Acta Mater. 60, 192 (2012).

J.E. Evans , K.L. Jungjohann , P.C.K. Wong , P-L. Chiu , G.H. Dutrow , I. Arslan , and N.D. Browning : Visualizing macromolecular complexes with in situ liquid scanning transmission electron microscopy. Micron 43, 1085 (2012).

U.M. Mirsaidov , H.M. Zheng , Y. Casana , and P. Matsudaira : Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J. 102, L15 (2012).

T.W. Huang , S.Y. Liu , Y.J. Chuang , H.Y. Hsieh , C.Y. Tsai , W.J. Wu , C.T. Tsai , U. Mirsaidov , P. Matsudaira , C.S. Chang , F.G. Tseng , and F.R. Chen : Dynamics of hydrogen nanobubbles in KLH protein solution studied with in situ wet-TEM. Soft Matter 9, 8856 (2013).

M.T. Proetto , A.M. Rush , M-P. Chien , P. Abellan Baeza , J.P. Patterson , M.P. Thompson , N.H. Olson , C.E. Moore , A.L. Rheingold , C. Andolina , J. Millstone , S.B. Howell , N.D. Browning , J.E. Evans , and N.C. Gianneschi : Dynamics of soft nanomaterials captured by transmission electron microscopy in liquid water. J. Am. Chem. Soc. 136, 1162 (2014).

E.R. White , S.B. Singer , V. Augustyn , W.A. Hubbard , M. Mecklenburg , B. Dunn , and B.C. Regan : In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6, 6308 (2012).

H.M. Zheng , S.A. Claridge , A.M. Minor , A.P. Alivisatos , and U. Dahmen : Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 9, 2460 (2009).

L.R. Parent , D.B. Robinson , P.J. Cappillino , R.J. Hartnett , P. Abellán , J.E. Evans , N.D. Browning , and I. Arslan : In situ observation of directed nanoparticle aggregation during the synthesis of ordered nanoporous metal in soft templates. Chem. Mater. 26, 1426 (2014).

M. Gu , L.R. Parent , B.L. Mehdi , R.R. Unocic , M.T. McDowell , R.L. Sacci , W. Xu , J.G. Connell , P. Xu , P. Abellan , X. Chen , Y. Zhang , D.E. Perea , J.E. Evans , L.J. Lauhon , J-G. Zhang , J. Liu , N.D. Browning , Y. Cui , I. Arslan , and C-M. Wang : Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 13, 6106 (2013).

M.E. Holtz , Y. Yu , D. Gunceler , J. Gao , R. Sundararaman , K.A. Schwarz , T.A. Arias , H.D. Abruña , and D.A. Muller : Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett. 14, 1453 (2014).

R.L. Sacci , N.J. Dudney , K.L. More , L.R. Parent , I. Arslan , N.D. Browning , and R.R. Unocic : Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. 50, 2104 (2014).

Z. Zeng , W-I. Liang , H-G. Liao , H.L. Xin , Y-H. Chu , and H. Zheng : Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14, 1745 (2014).

R.R. Unocic , R.L. Sacci , G.M. Brown , G.M. Veith , N.J. Dudney , K.L. More , F.S. Walden II., D.S. Gardiner , J. Damiano , and D.P. Nackashi : Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal. 20, 452 (2014).

X.H. Liu , F. Fan , H. Yang , S. Zhang , J.Y. Huang , and T. Zhu : Self-limiting lithiation in silicon nanowires. ACS Nano 7, 1495 (2012).

Y. Yang , C. Xie , R. Ruffo , H. Peng , D.K. Kim , and Y. Cui : Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 9, 4109 (2009).

F. Lin , D. Nordlund , T-C. Weng , Y. Zhu , C. Ban , R.M. Richards , and H.L. Xin : Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat. Commun. 5, 3358 (2014).

F. Wang , J. Graetz , M.S. Moreno , C. Ma , L. Wu , V. Volkov , and Y. Zhu : Chemical distribution and bonding of lithium in intercalated graphite: Identification with optimized electron energy loss spectroscopy. ACS Nano 5, 1190 (2011).

X.H. Liu , Y. Liu , A. Kushima , S. Zhang , T. Zhu , J. Li , and J.Y. Huang : In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2, 722 (2012).

P. Vajda and F. Beuneu : Electron radiation damage and Li-colloid creation in Li2O. Phys. Rev. B 53, 5335 (1996).

G. Krexner , M. Prem , F. Beuneu , and P. Vajda : Nanocluster formation in electron-irradiated Li2O crystals observed by elastic diffuse neutron scattering. Phys. Rev. Lett. 91, 135502 (2003).

C.M. Wang , D.R. Baer , J.E. Amonettea , M.H. Engelharda , J.J. Antony , and Y. Qiang : Electron beam-induced thickening of the protective oxide layer around Fe nanoparticles. Ultramicroscopy 108, 43 (2007).

F. Wang , M. Malac , and R.F. Egerton : Energy-loss near-edge fine structures of iron nanoparticles. Micron 37, 316 (2006).

M. den Heijer , I. Shao , A. Radisic , M.C. Reuter , and F.M. Ross : Patterned electrochemical deposition of copper using an electron beam. APL Mater. 2, 022101 (2014).

J.M. Grogan , N.M. Schneider , F.M. Ross , and H.H. Bau : Bubble and pattern formation in liquid induced by an electron beam. Nano Lett. 14, 359 (2014).

P. Abellan , B.L. Mehdi , L.R. Parent , M. Gu , C. Park , W. Xu , Y. Zhang , I. Arslan , J-G. Zhang , C-M. Wang , J.E. Evans , and N.D. Browning : Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett. 14, 1293 (2014).

K. Xu : Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303 (2004).

E. Nasybulin , W. Xu , M.H. Engelhard , Z.M. Nie , S.D. Burton , L. Cosimbescu , M.E. Gross , and J.G. Zhang : Effects of electrolyte salts on the performance of Li-O2 batteries. J. Phys. Chem. C 117, 2635 (2013).

Y. Gofer , M. Ben-Zion , and D. Aurbach : Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries. J. Power Sources 39, 163 (1992).

C. Nanjundiah , J.L. Goldman , L.A. Dominey , and V.R. Koch : Electrochemical stability of LiMF6 (M=P, As, Sb) in tetrahydrofuran and sulfolane. J. Electrochem. Soc. 135, 2914 (1988).

J. Belloni , M. Mostafavi , H. Remita , J.L. Marignier , and M.O. Delcourt : Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J. Chem. 22, 1239 (1998).

J. Belloni : Nucleation, growth and properties of nanoclusters studied by radiation chemistry – Application to catalysis. Catal. Today 113, 141 (2006).

E. Peled , D. Golodnitsky , C. Menachem , and D. Bar-Tow : An advanced tool for the selection of electrolyte components for rechargeable lithium batteries. J. Electrochem. Soc. 145, 3482 (1998).

P. Verma , P. Maire , and P. Novak : A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332 (2010).

R.F. Egerton : Control of radiation damage in the TEM. Ultramicroscopy 127, 100 (2013).

T.J. Woehl , K.L. Jungjohann , J.E. Evans , I. Arslan , W.D. Ristenpart , and N.D. Browning : Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127, 53 (2013).

D.A. Welch , R. Faller , J.E. Evans , and N.D. Browning : Simulating realistic imaging conditions for in situ liquid microscopy. Ultramicroscopy 135, 36 (2013).

R.F. Egerton : Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. (Springer, New York, NY, 2011).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
UNKNOWN
Supplementary Video

Chong-Min Wang supplementary video
In situ TEM and spectroscopy studies of rechargeable batteries under dynamic operating conditions

 Unknown

Metrics

Altmetric attention score