Skip to main content Accessibility help

Monolithic nanoporous copper by dealloying Mn–Cu

  • J.R. Hayes (a1), A.M. Hodge (a1), J. Biener (a1), A.V. Hamza (a1) and K. Sieradzki (a2)...


Monolithic nanoporous copper was synthesized by dealloying Mn0.7Cu0.3 by two distinct methods: potentiostatically driven dealloying and free corrosion. Both the ligament size and morphology were found to be highly dependent on the dealloying methods and conditions. For example, ligaments from 16 nm–125 nm were obtained by dealloying either electrochemically or by free corrosion, respectively. Optimization of the starting Mn–Cu alloy microstructure allowed us to synthesize uniform porous structures; but we found cracking to be unavoidable. Despite the presence of unavoidable defects, the nanoporous material still exhibits higher than expected yield strength.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.Pan, Z., Zavalin, A., Ueda, A., Guo, M., Groza, M., Burger, A., Mu, R., Morgan, S.H.: Surface-enhanced Raman spectroscopy using silver-coated porous glass-ceramic substrates. Appl. Spectrosc. 59, 782 (2005).
2.Kuncicky, D.M., Christesen, S.D., Velev, O.D.: Role of the micro- and nanostructure in the performance of surface-enhanced Raman scattering substrates assembled from gold nanoparticles. Appl. Spectrosc. 59, 401 (2005).
3.Williamson, T.L., Guo, X.Y., Zukoski, A., Sood, A., Diaz, D.J., Bohn, P.W.: Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces. J. Phys. Chem. B 109, 20186 (2005).
4.Smith, A.J., Trimm, D.L.: The preparation of skeletal catalysts. Annu. Rev. Mater. Res. 35, 127 (2005).
5.Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.M., Satcher, J.H.: Nanoporous Au: A high yield strength material. J. Appl. Phys. 97, 023401 (2005).
6.Li, R., Sieradzki, K.: Ductile-brittle transition in random porous Au. Phys. Rev. Lett. 68, 1168 (1992).
7.Newman, R.C., Corcoran, S.G., Erlebacher, J., Aziz, M.J., Sieradzki, K.: Alloy corrosion. MRS Bull. 24, 24 (1999).
8.Erlebacher, J., Sieradzki, K.: Pattern formation during dealloying. Scripta Mater. 49, 991 (2003).
9.Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., Sieradzki, K.: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).
10.Forty, A.J., Durkin, P.: A micro-morphological study of the dissolution of silver-gold alloys in nitric-acid. Philos. Mag. A 42, 295 (1980).
11.Sieradzki, K., Kim, J.S., Cole, A.T., Newman, R.C.: The relationship between dealloying and transgranular stress-corrosion cracking of Cu-Zn and Cu-Al alloys. J. Electrochem. Soc. 134, 1635 (1987).
12.Erlebacher, J.: An atomistic description of dealloying—Porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 151, C614 (2004).
13.Sieradzki, K., Corderman, R.R., Shukla, K., Newman, R.C.: Computer-simulations of corrosion—selective dissolution of binary-alloys. Philos. Mag. A 59, 713 (1989).
14.Mellor, J.R., Coville, N.J., Sofianos, A.C., Copperthwaite, R.G.: Raney copper catalysts for the water-gas shift reaction: I. Preparation, activity and stability. Appl. Catal., A 164, 171 (1997).
15.Mellor, J.R., Coville, N.J., Durbach, S.H., Copperthwaite, R.G.: Acid leached Raney copper catalysts for the water-gas shift reaction. Appl. Catal., A 171, 273 (1998).
16.Keir, D.S., Pryor, M.J.: The dealloying of copper-manganese alloys. J. Electrochem. Soc. 127, 2138 (1980).
17.Min, U.S., Li, J.C.M.: The microstructure and dealloying kinetics of a Cu-Mn alloy. J. Mater. Res. 9, 2878 (1994).
18.Pryor, M.J., Fister, J.C.: The mechanism of dealloying of copper solid-solutions and intermetallic phases. J. Electrochem. Soc. 131, 1230 (1984).
19.Thornton, K., Akaiwa, N., Voorhees, P.W.: Large-scale simulations of Ostwald ripening in elastically stressed solids. II. Coarsening kinetics and particle size distribution. Acta Mater. 52, 1365 (2004).
20.Smith, A.J., Tran, T., Wainwright, M.S.: Kinetics and mechanism of the preparation of Raney (R) copper. J. Appl. Electrochem. 29, 1085 (1999).
21.Raney, M. Method of preparing catalytic material. U.S. Patent No. 1,563,587 (1925).
22.Raney, M. Method of producing finely divided nickel. U.S. Patent No. 1,628,190 (1927).
23.ASM Handbook, Vol. 3: Alloy Phase Diagrams, edited by Baker, H. (ASM International, Materials Park, OH, 1992) p. 172.
24.Dursun, A., Pugh, D.V., Corcoran, S.G.: Dealloying of Ag-Au alloys in halide-containing electrolytes—Affect on critical potential and pore size. J. Electrochem. Soc. 150, B355 (2003).
25.Ding, Y., Kim, Y.J., Erlebacher, J.: Nanoporous gold leaf: “Ancient technology”/advanced material. Adv. Mater. 16, 1897 (2004).
26.Belmont, O., Faivre, C., Bellet, D., Brechet, Y.: About the origin and the mechanisms involved in the cracking of highly porous silicon layers under capillary stresses. Thin Solid Films 276, 219 (1996).
27.Dean, R.S., Long, J.R., Graham, T.R., Potter, E.V., Hayes, E.T.: The copper-manganese equilibrium system. Transactions of the ASM 34, 443 (1945).
28.Greer, J.R., Nix, W.D.: Size dependence of mechanical properties of gold at the sub-micron scale. Appl. Phys. A. 80, 1625 (2005).
29.Greer, J.R., Oliver, W.C., Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).
30.Patel, J.R., Cohen, M.: Criterion for the action of applied stress in the martensitic transformation. Acta Mater. 1, 531 (1953).
31.Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, UK, 1997) p. 209.
32.Wang, Y.M., Chen, M.W., Zhou, F.H., Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed