Skip to main content

Effect of underlying boron nitride thickness on photocurrent response in molybdenum disulfide - boron nitride heterostructures

  • Milinda Wasala (a1), Jie Zhang (a1), Sujoy Ghosh (a1), Baleeswaraiah Muchharla (a1), Rachel Malecek (a1), Dipanjan Mazumdar (a1), Hassana Samassekou (a1), Moses Gaither-Ganim (a1), Andrew Morrison (a1), Nestor-Perera Lopez (a2), Victor Carozo (a2), Zhong Lin (a2), Mauricio Terrones (a3) and Saikat Talapatra (a4)...

Here we report on the photocurrent response of two-dimensional (2D) heterostructures of sputtered MoS2 on boron nitride (BN) deposited on (001)-oriented Si substrates. The steady state photocurrent (I ph) measurements used a continuous laser of λ = 658 nm (E = 1.88 eV) over a broad range of laser intensities, P (∼1 μW < P < 10 μW), and indicate that I ph obtained from MoS2 layers with the 80 nm BN under layer was ∼4 times higher than that obtained from MoS2 layers with the 30 nm BN under layer. We also found super linear dependence of I ph on P (I phP γ, with γ > 1) in both the samples. The responsivities obtained over the range of laser intensity studied were in the order of mA/W (∼12 and ∼2.7 mA/W with 80 nm BN and 30 nm BN under layers, respectively). These investigations provide crucial insight into the optical activity of MoS2 on BN, which could be useful for developing a variety of optoelectronic applications with MoS2 or other 2D transition metal dichalcogenide heterostructures.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).
2. Jariwala, D., Sangwan, V.K., Lauhon, L.J., Marks, T.J., and Hersam, M.C.: Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102 (2014).
3. Pradhan, N., Rhodes, D.A., Memaran, S., Poumirol, J.M., Smirnov, D., Talapatra, S., Feng, S., Perea-López, N., Elias, A.L., Terrones, M., Ajayan, P.M., and Balicas, L.: Hall and field-effect mobilities in few layered p-WSe2 field-effect transistors. Sci. Rep. 5, 8979 (2015).
4. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011).
5. Ghosh, S., Najmaei, S., Kar, S., Vajtai, R., Pradhan, N., Lou, J., Balicas, L., Ajayan, P.M., and Talapatra, S.: Universal ac conductance in large area CVD grown MoS2 . Phys. Rev. B 89, 125422 (2014).
6. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).
7. Kim, S., Konar, A., Hwang, W., Lee, J.H., Lee, J., Yang, J., Jung, C., Kim, H., Yoo, J.B., Choi, J.Y., Jin, Y.W., Lee, S.Y., Jena, D., Choi, W., and Kim, K.: High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).
8. Zhang, Y., Ye, J., Matsuhashi, Y., and Iwasa, Y.: Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136 (2012).
9. Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, Q., Chen, X., and Zhang, H.: Single-layer MoS2 phototransistors. ACS Nano 6(1), 74 (2012).
10. Lee, H.S., Min, S.W., Chang, Y.G., Park, M.K., Nam, T., Kim, H., Kim, J.H., Ryu, S., and Im, S.: MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12(7), 3695 (2012).
11. Ghosh, S., Winchester, A., Muchharla, B., Wasala, M., Feng, S., Elias, A.L., Krishna, M.B.M., Harada, T., Chin, C., Dani, K., Kar, S., Terrones, M., and Talapatra, S.: Ultrafast intrinsic photoresponse and direct evidence of sub-gap states in liquid phase exfoliated MoS2 thin films. Sci. Rep. 5, 11272 (2015).
12. Bao, W., Cai, X., Kim, D., Sridhara, K., and Fuhrer, M.S.: High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013).
13. Bilgin, I., Liu, F., Vargas, A., Winchester, A., Man, M.K.L., Upmanyu, M., Dani, K., Gupta, G., Talapatra, S., Mohite, A.D., and Kar, S.: Chemical vapor deposition synthesized atomically-thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9(9), 8822 (2015).
14. Buscema, M., Steele, G.A., van der Zant, H.S.J., and Castellanos-Gomez, A.: The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2 . Nano Res. 7, 561 (2014).
15. Lien, D-H., Kang, J.S., Amani, M., Chen, K., Tosun, M., Wang, H-P., Roy, T., Eggleston, M.S., Wu, M.C., Dubey, M., Lee, S-C., He, J-H., and Javey, A.: Engineering light outcoupling in 2D materials. Nano Lett. 15, 1356 (2015).
16. Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., Zou, X., Ye, G., Vajtai, R., Yakobson, B.I., Terrones, H., Terrones, M., Tay, B.K., Lou, J., Pantelides, S.T., Liu, Z., Zhou, W., and Ajayan, P.M.: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135 (2014).
17. Liu, Z., Song, L., Zhao, S., Huang, J., Ma, L., Zhang, J., Lou, J., and Ajayan, P.M.: Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11(5), 2032 (2011).
18. Shi, Y., Zhou, W., Lu, A.Y., Fang, W., Lee, Y.H., Hsu, A.L., Kim, S.M., Kim, K.K., Yang, H.Y., Li, L.J., Idrobo, J.C., and Kong, J.: van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12(6), 2784 (2012).
19. Okada, M., Sawazaki, T., Watanabe, K., Taniguch, T., Hibino, H., Shinohara, H., and Kitaura, R.: Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 8(8), 8273 (2014).
20. Zhang, X., Meng, F., Christianson, J.R., Arroyo-Torres, C., Lukowski, M.A., Liang, D., Schmidt, J.R., and Jin, S.: Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy. Nano Lett. 14(6), 3047 (2014).
21. Björck, M. and Andersson, G.: GenX: An extensible x-ray reflectivity refinement program utilizing differential evolution. J. Appl. Cryst. 40, 1174 (2007).
22. Windom, B.C., Sawyer, W.G., and Hahn, D.W.: A Raman spectroscopic study of MoS2 and MoO3: Applications to tribological systems. Tribol. Lett. 42(3), 301 (2011).
23. Li, H., Zhang, Q., Yap, C.C.R., Tay, B.K., Edwin, T.H.T., Olivier, A., and Baillargeat, D.: From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385 (2012).
24. Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J., and Ryu, S.: Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4(5), 2695 (2010).
25. Boukhicha, M., Calandra, M., Measson, M.A., Lancry, O., and Shukla, A.: Anharmonic phonons in few-layer MoS2: Raman spectroscopy of ultralow energy compression and shear modes. Phys. Rev. B 87, 195316 (2013).
26. Rose, A.: Recombination processes in insulators and semiconductors. Phys. Rev. 97(2), 322 (1955).
27. Perea-López, N., Elías, A.L., Berkdemir, A., Castro-Beltran, A., Gutiérrez, H.R., Feng, S., Lv, R., Hayashi, T., López-Urías, F., Ghosh, S., Muchharla, B., Talapatra, S., Terrones, H., and Terrones, M.: Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23, 5511 (2013).
28. Kundu, S., Ghosh, S., Fralaide, M., Narayanan, T.N., Pillai, V.K., and Talapatra, S.: Fractional photo-current dependence of graphene quantum dots prepared from carbon nanotubes. Phys. Chem. Chem. Phys. 17, 24566 (2015).
29. Chi, K.K.: Dielectric Phenomena in Solids (Academic Press, Burlington, 2004).
30. Mott, N.F. and Davis, E.: Electronic Processes in Non-crystalline Materials (Oxford University Press, London, 1971).
31. Kushwaha, N., Kushwaha, V.S., Shukla, R.K., and Kumar, A.: Determination of energy of defect centers in a-Se78Ge22 thin films. Philos. Mag. Lett. 86, 691 (2006).
32. Bakr, N.A.: Anomalous photoconductive transport properties of As2Se3 films. Egypt. J. Sol. 25, 13 (2002).
33. Klee, V., Preciado, E., Barroso, D., Nguyen, A.E., Lee, C., Erickson, K.J., Triplett, M., Davis, B., Lu, I-H., Bobek, S., McKinley, J., Martinez, J.P., Mann, J., Talin, A.A., Bartels, L., and Léonard, F.: Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1–x)Se2x alloy devices. Nano Lett. 15, 2612 (2015).
34. Qiu, H., Pan, L., Yao, Z., Li, J., Shi, Y., and Wang, X.: Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 100, 123104 (2012).
35. Park, W., Park, J., Jang, J., Lee, H., Jeong, H., Cho, K., Hong, S., and Lee, T.: Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology 24, 095202 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 17
Total number of PDF views: 91 *
Loading metrics...

Abstract views

Total abstract views: 481 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th March 2018. This data will be updated every 24 hours.