Skip to main content
×
×
Home

Effects of peroxo precursors and annealing temperature on properties and photocatalytic activity of nanoscale titania

  • Elena Vladimirovna Savinkina (a1), Lubov N. Obolenskaya (a1), Galina M. Kuzmicheva (a1), Ilya D. Morozov (a1) and Ratibor G. Chumakov (a2)...
Abstract

Titania nanoparticles (anatase or anatase + rutile) with enhanced photocatalytic activity were successfully produced by treating titanyl sulfate with various peroxo compounds (hydrogen peroxide, ammonium persulfate, and urea hydrogen peroxide) with further annealing. Transformation of titanyl sulfate to titanium dioxide was investigated by X-ray diffraction, electron microscopy, X-ray microanalysis, IR, Raman, X-ray photoelectron, and UV/vis spectroscopy. The peroxo compound and annealing temperature play an important role in phase composition and properties of the samples. Correlations between phase composition, oxygen content, band gaps, and constant rates for methyl orange (MO) discoloration were found. The [TiOx(O2)2−x(H2O)m] phase, which forms on the first stage of the reaction, contains nanoparticles with small crystallites (1–2 nm) and promotes formation of titanium dioxide with the anatase structure. Thermal decomposition of the peroxo-containing phase results in formation of titanium dioxide. Oxygen excess prevents transformation of anatase to rutile, decreases band gap, and increases activity of titanium dioxide (anatase or anatase + rutile) in the model reaction of MO destruction.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: e.savinkina@mail.ru
References
Hide All
1.Hashimoto, K., Irie, H., and Fujishima, A.: TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269 (2005).
2.Tanaka, K., Capule, M.F.V., and Hisanaga, T.: Effect of crystallinity of TiO2 on its photocatalytic action. Chem. Phys. Lett. 187, 73 (1991).
3.Billik, P. and Plesch, G.: Mechanochemical synthesis of anatase and rutile nanopowders from TiOSO4. Mater. Lett. 61, 1183 (2007).
4.Ismagilov, Z.R., Tsykoza, L.T., Shikina, N.V., Zarytova, V.F., Zinoviev, V.V., and Zagrebelnyi, S.N.: Synthesis and stabilization of nano-sized titanium dioxide. Russ. Chem. Rev. 78, 873 (2009).
5.Han, C., Luque, R., and Dionysiou, D.: Facile preparation of controllable size monodisperse anatase titania nanoparticles. Chem. Commun. 48, 1860 (2011).
6.Obolenskaya, L.N., Kuz’micheva, G.M., Savinkina, E.V., Sadovskaya, N.V., Zhilkina, A.V., Prokudina, N.A., and Chernyshev, V.V.: Influence of the conditions of the sulfate method on the characteristics of nanosized anatase-type samples. Russ. Chem. Bull. 61, 2049 (2012).
7.Fattakhova-Rohlfing, D., Zaleska, A., and Bein, T.: Three-dimensional titanium dioxide nanomaterials. Chem. Rev. 114, 9487 (2014).
8.Kumar, S.G. and Rao, K.S.R.K.: Polymorphic phase transition among the titania crystal structures using a solution-based approach: From precursor chemistry to nucleation process. Nanoscale 6, 11574 (2014).
9.Cargnello, M., Gordon, T.R., and Murray, C.B.: Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem. Rev. 114, 9319 (2014).
10.Lasfargues, M., Bell, A., and Ding, Y.: In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications. J. Nanopart. Res. 18, 150 (2016).
11.Hanrahan, E.S.: The thermal decomposition of titanyl sulphate hydrates. J. Inorg. Nucl. Chem. 26, 1757 (1964).
12.Ahmed, M.A.K., Fjellvåg, H., and Kjekshus, A.: Syntheses and crystal structures of titanium oxide sulfates. Acta Chem. Scand. 50, 275 (1996).
13.Reynolds, M.L. and Wiseman, T.J.: Some observations on the structure of titanyl sulphate dihydrate. J. Inorg. Nucl. Chem. 29, 1381 (1967).
14.Johnsson, M., Pettersson, P., and Nygren, M.: Thermal decomposition of fibrous TiOSO4·2H2O to TiO2. Thermochim. Acta 298, 47 (1997).
15.Reynolds, H., Bhargava, S., and Antolasic, F.: Structural investigation of titanyl sulfate dihydrate and intermediates formed during thermal decomposition. Chemeca, Tade, M., ed. (Engineers Australia, Perth, Australia, 2009); pp. 110.
16.Hanaor, D.A.H. and Sorrell, C.C.: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855 (2011).
17.Strauss, M., Maroneze, C.M., de Souza e Silva, J.M., Sigoli, F.A., Gushikem, Y., and Mazali, I.O.: Annealing temperature effects on sol–gel nanostructured mesoporous TiO2/SiO2 and its photocatalytic activity. Mater. Chem. Phys. 126, 188 (2011).
18.Ge, L., Xu, M., E, L., Tian, Y., and Fang, H.: Preparation of TiO2 thin films using inorganic peroxo titanic complex and autoclaved sols as precursors. Key Eng. Mater. 280–283, 809 (2005).
19.Kim, H.W., Ryu, J.H., Moon, J., and Kim, D.H.: Effect of ultrasonic treatment and temperature on nanocrystalline TiO2. J. Power Sources 163, 196 (2006).
20.Ge, L. and Xu, M.: Fabrication and characterization of TiO2 photocatalytic thin film prepared from peroxo titanic acid sol. J. Sol-Gel Sci. Technol. 43, 1 (2007).
21.Chang, J.A., Vithal, M., Baek, I.C., and Seok, S.I.: Morphological and phase evolution of TiO2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid. J. Solid State Chem. 182, 749 (2009).
22.Bandgar, A., Sabale, S., and Pawar, S.H.: Studies on influence of reflux time on synthesis of nanocrystalline TiO2 prepared by peroxotitanate complex solutions. Ceram. Int. 38, 1905 (2012).
23.Štengl, V., Henych, J., Szatmáry, L., and Kormunda, M.: Photocatalytic oxidation of butane by titania after reductive annealing. J. Mater. Sci. 49, 4161 (2014).
24.Francatto, P., Souza Neto, F.N., Nogueira, A.E., Kubo, A.M., Ribeiro, L.S., Gonçalves, L.P., Gorup, L.F., Leite, E.R., and Camargo, E.R.: Enhanced reactivity of peroxo-modified surface of titanium dioxide nanoparticles used to synthesize ultrafine bismuth titanate powders at lower temperatures. Ceram. Int. 42, 15767 (2016).
25.Lee, K-Y., Sato, K., and Mohamed, A.R.: Facile synthesis of anatase-rutile TiO2 composites with enhanced CO2 photoreduction activity and the effect of Pt loading on product selectivity. Mater. Lett. 163, 240 (2016).
26.Štengl, V., Grygar, T.M., Henych, J., and Kormunda, M.: Hydrogen peroxide route to Sn-doped titania photocatalysts. Chem. Cent. J. 6, 113 (2012).
27.Etacheri, V., Seery, M.K., Hinder, S.J., and Pillai, S.C.: Oxygen rich titania: A dopant free, high temperature stable, and visible-light active anatase photocatalyst. Adv. Funct. Mater. 21, 3744 (2011).
28.Savinkina, E., Obolenskaya, L., and Kuzmicheva, G.: Efficiency of sensitizing nano-titania with organic dyes and peroxo complexes. Appl. Nanosci. 5, 125 (2015).
29.Savinkina, E.V., Obolenskaya, L.N., Kuzmicheva, G.M., Kabachkov, E.N., Gainanova, A.A., Zubavichus, Y.V., Murzin, V.Y., and Sadovskaya, N.V.: Introduction of peroxo groups into titania: Preparation, characterization and properties of the new peroxo-containing phase. CrystEngComm 17, 7113 (2015).
30.Ma, X., Guo, D., Jiang, Q., Ma, Z., Ma, Zh., Ye, W., and Li, C.: Preparation and characterization of SO42−/TiO2 and S2O82−/TiO2 catalysts. Front. Chem. Eng. China 1, 45 (2007).
31.Watanabe, N., Kaneko, T., Uchimaru, Y., Yanagida, S., Yasumori, A., and Sugahara, Y.: Preparation of water-dispersible TiO2 nanoparticles from titanium tetrachloride using urea hydrogen peroxide as an oxygen donor. CrystEngComm 15, 10533 (2013).
32.Abu Bakar, S. and Ribeiro, C.: Low temperature synthesis of N-doped TiO2 with rice-like morphology through peroxo assisted hydrothermal route: Materials characterization and photocatalytic properties. Appl. Surf. Sci. 377, 121 (2016).
33.Obolenskaya, L.N., Gaynanova, A.A., Kravchenko, G.V., Kuz’micheva, G.M., Savinkina, E.V., Domoroshchina, E.N., Tsybinsky, A.M., and Podbelsky, A.V.: Nanocomposites based on silicon dioxide of different nature with functional titanium dioxide nanoparticles. Nanotechnol. Russ. 11, 41 (2016).
34.López, R. and Gómez, R.: Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 61, 1 (2012).
35.Brown, G.T. and Darwent, J.R.: Photoreduction of methyl orange sensitized by colloidal titanium dioxide. J. Chem. Soc., Faraday Trans. 1 80, 1631 (1984).
36.Periyat, P., Naufal, B., and Ullattil, S.G.: A review on high temperature stable anatase TiO2 photocatalysts. Mater. Sci. Forum 855, 78 (2016).
37.Obolenskaya, L.N., Savinkina, E.V., Kuzmicheva, G.M., and Istomin, A.B.: Formation of nano-titania by thermal decomposition of titanyl sulfate in the presence of (NH4)2SO4, (NH4)2S2O6(O2), and (NH2)2CO·H2O2. In XX Mendeleev Congress on General and Applied Chemistry, 26–30 September, Ekaterinburg, 2016: Abstract Book, Vol. 2b; Chemistry and Technology of Materials and Nanomaterials (Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 2016); p. 23.
38.Vasilyeva, I., Kuz’micheva, G., Pochtar, A., Gainanova, A., Timaeva, O., Dorokhov, A., and Podbel’skiy, V.: On the nature of the phase “η-TiO2. New J. Chem. 40, 151 (2016).
39.Ono, Y. and Hattori, H.: Solid Base Catalysis (Springer Science & Business Media, Tokyo, 2012); p. 113.
40.Tarasov, A., Trusov, G., Minnekhanov, A., Gil, D., Konstantinova, E., Goodilin, E., and Dobrovolsky, Y.: Facile preparation of nitrogen-doped nanostructured titania microspheres by a new method of thermally assisted reactions in aqueous sprays. J. Mater. Chem. A 2, 3102 (2014).
41.Wang, G., Xu, L., Zhang, J., Yin, T., and Han, D.: Enhanced photocatalytic activity of TiO2 powders (P25) via calcination treatment. Int. J. Photoenergy 2012, 265760 (2012).
42.Madhusudan Reddy, K., Manorama, S.V., and Ramachandra Reddy, A.: Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239 (2002).
43.Tan, L.L., Ong, W.J., Chai, S.P., and Mohamed, A.R.: Band gap engineered, oxygen-rich TiO2 for visible light induced photocatalytic reduction of CO2. Chem. Commun. 50, 6923 (2014).
44.Shannon, R.D. and Pask, J.A.: Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 48, 391 (1965).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary materials

Savinkina et al. supplementary material
Savinkina et al. supplementary material 1

 Word (1.4 MB)
1.4 MB

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 128 *
Loading metrics...

* Views captured on Cambridge Core between 28th March 2018 - 23rd May 2018. This data will be updated every 24 hours.