Skip to main content Accessibility help
×
×
Home

Effects of pore morphology on fatigue strength and fracture surface of lotus-type porous copper

  • H. Seki (a1), M. Tane (a1), M. Otsuka (a2) and H. Nakajima (a1)

Abstract

We studied the effect of anisotropic pore morphology on the fatigue behavior and fracture surface of lotus-type porous copper, which was fabricated through unidirectional solidification in pressurized hydrogen and argon atmospheres. The fatigue strength at finite life is closely related to the pore morphology. The fatigue strength decreases with increasing porosity, and the strength depends on applied-stress direction. The fatigue life is the longest in the direction parallel to the longitudinal axis of cylindrical pores. The fatigue strength at finite life is proportional to the ultimate tensile strength and can be expressed by a simple power-law formula. Anisotropic pores affect the fracture surface of lotus copper; crack-initiation site depends on applied-stress direction, and the anisotropic shape pores affect the direction of crack propagation and final fracture surface.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: mtane@sanken.osaka-u.ac.jp

References

Hide All
1Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., and Wadley, H.N.G.: Metal Foams (Butterworth-Heineman Press/Elsevier Science, Burlington, MA, 2000).
2Banhart, J.: Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559 (2001).
3Ashby, M.F.: The mechanical-properties of cellular solids. Metall. Mater. Trans. A 14, 1755 (1983).
4Gibson, L.J. and Ashby, M.F.: Cellular Solids 2nd ed. (Cambridge University Press, U.K., 1997).
5Nakajima, H., Hyun, S.K., Ohashi, K., Ota, K., and Murakami, K.: Fabrication of porous copper by unidirectional solidification under hydrogen and its properties. Colloids Surf., A 179, 209 (2001).
6Nakajima, H., Ikeda, T., and Hyun, S.K.: Fabrication of lotus-type porous metals and their physical properties. Adv. Eng. Mater. 6, 377 (2004).
7Hyun, S.K. and Nakajima, H.: Anisotropic compressive properties of porous copper produced by unidirectional solidification. Mater. Sci. Eng. A340, 258 (2003).
8Tane, M., Ichitsubo, T., Hyun, S.K., and Nakajima, H.: Anisotropic yield behavior of lotus-type porous iron: Measurements and micromechanical mean-field analysis. J. Mater. Res. 20, 135 (2005).
9Tane, M., Ichitsubo, T., Nakajima, H., Hyun, S.K., and Hirao, M.: Elastic properties of lotus-type porous iron: Acoustic measurement and extended effective-mean-field theory. Acta Mater. 52, 5195 (2004).
10Sugimura, Y., Meyer, J., He, M.Y., Bart-Smith, H., Grenstedt, J., and Evans, A.G.: On the mechanical performance of closed cell Al alloy foams. Acta Mater. 45, 5245 (1997).
11Zhou, J. and Soboyejo, W.O.: Compression-compression fatigue of open cell aluminum foams: macro-/micro- mechanisms and the effects of heat treatment. Mater. Sci. Eng. A369, 23 (2004).
12Olurin, O.B., McCullough, K.Y.G., Fleck, N.A., and Ashby, M.F.: Fatigue-crack propagation in aluminium alloy foams. Int. J. Fatigue 23, 375 (2001).
13Harte, A-M., Fleck, N.A., and Ashby, M.F.: Fatigue failure of an open cell and a closed cell aluminium alloy foam. Acta Mater. 47, 2511 (1999).
14Sugimura, Y., Rabiei, A., Evans, A.G., Harte, A.M., and Fleck, N.A.: Compression fatigue of a cellular Al alloy. Mater. Sci. Eng. A269, 38 (1999).
15Seki, H., Yamazaki, S., Otsuka, M., Tane, M., Hyun, S.K., and Nakajima, H.: Effect of porosity on fatigue strength of lotus-type porous copper. Mater. Sci. Forum 510, 966 (2006).
16Hyun, S.K. and Nakajima, H.: Effect of solidification velocity on pore morphology of lotus-type porous metals fabricated by unidirectional solidification. Mater. Lett. 57, 3149 (2003).
17Ichitsubo, T., Tane, M., Ogi, H., Hirao, M., Ikeda, T., and Nakajima, H.: Anisotropic elastic constants of lotus-type porous copper: Measurements and micromechanics modeling. Acta Mater. 50, 4105 (2002).
18Onishi, H., Hyun, S.K., and Nakajima, H.: Measurement of pore length of lotus-type porous nickel, inPorous Metals and Metal Foaming Technology, edited by Nakajima, H. and Kanetake, N. (The Japan Institute of Metals, Sendai, Japan, 2006), p. 423.
19Suresh, S.: Fatigue of Materials 2nd ed. (Cambridge University Press, UK, 1998).
20Hyun, S.K., Murakami, K., and Nakajima, H.: Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification. Mater. Sci. Eng. A299, 241 (2001).
21Gerber, T.L. and Fuchs, H.O.: Analysis of non-propagating cracks in notched parts with compressive mean stress. J. Mater. 3, 359 (1968).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed