Skip to main content
    • Aa
    • Aa

Enthalpy of formation of cubic yttria-stabilized hafnia

  • Theresa A. Lee (a1) and Alexandra Navrotsky (a1)

The enthalpy of formation of cubic yttria-stabilized hafnia from monoclinic hafnia and C-type yttria was measured by oxide melt solution calorimetry. The enthalpies of formation fit a function independent of temperature and quadratic in composition. The enthalpies of transition from m-HfO2 and C-type YO1.5, to the cubic fluorite phase are 32.5 ± 1.7 kJ/mol and 38.0 ± 13.4 kJ/mol, respectively. The interaction parameter in the fluorite phase is strongly negative, -155.2 ± 10.2 kJ/mol, suggesting even stronger short range order than in ZrO2–YO1.5. Regular solution theory or any other model assuming random mixing on the cation and /or anion sublattice is not physically reasonable. A more complex solution model should be developed to be consistent with the new calorimetric data and observed phase relations.

Corresponding author
b)Address all correspondence to this author.e-mail:
Hide All
1Wang J., Li H.P. and Stevens R.: Hafnia and hafnia-toughened ceramics. J. Mater. Sci. 27, 5397 (1992).
2Stevens R.: An Introduction to Zirconia (Magnesium Electron, Twickenham, U.K., 1986)
3Sickafus K.E., Valdez J.A., Williams J.R., Grimes R.W. and Hawkins H.T.: Radiation induced amorphization resistance in A2O3–BO2 oxides. Nucl. Instrum. Meth. B 191, 549 (2002).
4Wallace R.M. and Wilk G.: High-kappa gate dielectric materials. MRS Bull. 27, 192 (2002).
5Nowick A.S. and Park D.S. in Superionic Conductors , edited by Mahan G.D and Roth W.L. (Plenum Press, New York, 1976)
6Kharton V.V., Yaremchenko A.A., Naumovich E.N. and Marques F.M.B.: Research on the electrochemistry of oxygen ion conductors in the former Soviet Union III. HfO2−, CeO2− and ThO2−based oxides. J. Solid State Electrochem. 4, 243 (2000).
7Trubelja M.F. and Stubican V.S.: Ionic conductivity of the fluorite-type hafnia-R2O3 solid solutions. J. Am. Ceram. Soc. 74, 2489 (1991).
8Schieltz J.D., Patterson J.W. and Wilder D.R.: Electrolytic behavior of yttria-stabilized hafnia. J. Electrochem. Soc. 118, 1257 (1971).
9Etsell T.H. and Flengas S.N.: Electrical properties of solid oxide electrolytes. Chem. Rev. 70, 339 (1970).
10Kilner J.A. and Steele B.C.H. in Nonstoichiometric Oxides , edited by Sørenson O.T. (Academic Press, New York, 1981), p. 254
11Navrotsky A.: Progress and New Directions in High Temperature Calorimetry Revisited. Phys. Chem. Miner. 24, 222 (1997).
12 K.B. Helean and A. Navrotsky: Oxide Melt Solution Calorimetry of Rare Earth Oxides: Techniques, Problems, Cross-Checks, Successes, unpublished.
13McHale J.M., Kowach G.R., Navrotsky A. and DiSalvo F.J.: Thermochemistry of Metal Nitrides in the Ca/Zn/N System. Chem. Eur. J. 2, 1514 (1996).
14Stacy D.W. and Wilder D.R.: J. Am. Ceram. Soc. 58, 285 (1975).
15Putnam R.L. Formation Energetics of Ceramic Waste Materials for the Disposal of Surplus Weapons Plutonium. Ph.D. Dissertation, Princeton University, Princeton, NJ, 1999
16Robie R.A., Hemingway B.S. and Fisher J.R. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U.S. Geol. Survey Bull. 1452, 456 (1979)
17Ushakov S.V., Helean K.B., Navrotsky A. and Boatner L.A.: Thermochemistry of rare-earth orthophosphates. J. Mater. Res. 16, 2623 (2001).
18Lowther J.E., Dewhurst J.K., Leger J.M. and Haines J.: Relative stability of ZrO2 and HfO2 structural phases. Phys. Rev. B 60, 14485 (1999).
19Foster A.S., Gejo F. Lopez, Shluger A.L. and Nieminen R.M.: Mechanism of interstitial oxygen diffusion in hafnia. Phys. Rev. B 65, 174117 (2002).
20Lee T.A., Navrotsky A. and Molodetsky I.: Enthalpy of formation of cubic yttria-stabilized zirconia. J. Mater. Res. 18, 908 (2003).
21Katagiri S., Ishizawa N. and Marumo F.: A new high temperature modification of face-centered cubic Y2O3. Powder Diffraction 8, 60 (1993).
22Stanek C.R. and Grimes R.W.: Prediction of rare earth A2Hf2O7 pyrochlore phases. J. Am. Ceram. Soc. 85, 2139 (2002).
23Caillet R.M., Deportes C.H., Robert G. and Vitter G.: Structural study in system HfO2-Y2O3. Rev. Int. Haut. Temp. Refract. 4, 269 (1967).
24Duclot M., Vicat I. and Deportes C.H.: Mise en evidence et etude de la phase ordonnée Y2Hf7O17 dans le système HfO2–Y2O3. J. Solid Sate Chem. 2, 236 (1970).
25Hannon R. Phase Equilibria in the Hafnia-Yttria System and Refinement of Some Zirconia Binary Systems. M.S. Dissertation, The Pennsylvania State University, State College, PA, 1985
26Goff J.P., Hays W., Hull S., Hutchings M.T. and Clauseen K.N.: Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys. Rev. B 59, 14202 (1999).
27Steele D. and Fender B.E.F.: The structure of cubic ZrO2:YO1.5 solid solutions by neutron scattering. J. Phys. C: Solid State Phys. 7, 1 (1974).
28Gibson I.R. and Irvine J.T.S.: Study of Order/Disorder Transition in Yttria-stabilised Zironia by Neutron Diffraction. J. Mater. Chem. 6, 895 (1996).
29Rao J.C., Zhou Y. and Li D.X.: L12- and L10-like cation-ordered structures in ZrO2-Y2O3 ceramics. J. Mater. Res. 16, 1806 (2001).
30Schieltz J.D., Patterson J.W. and Wilder D.R.: Electrolytic behavior of yttria-stabilized hafnia. J. Electrochem. Soc. 118, 1257 (1971).
31Kaufman L. Calculation of Quasibinary and Quasiternary Ceramic Systems, in User Applications of Alloy PhaseDiagrams , edited by Kaufman L. (ASM International, Materials Park, OH, 1987).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 48 *
Loading metrics...

Abstract views

Total abstract views: 112 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.