Skip to main content Accessibility help

Fabrication and characterization of microencapsulated n-octadecane with silk fibroin–silver nanoparticles shell for thermal regulation

  • Yu Li (a1), Liang Zhao (a1), Hao Wang (a1) and Baohua Li (a2)


Novel microencapsulated n-octadecane with natural silk fibroin (SF) shell attached with silver nanoparticles (AgNPs) on its surface was synthesized in oil-in-water emulsion via a self-assembly method. No additional reductant was used in the in situ preparation of AgNPs due to the inherent reduction property of tyrosine (Tyr) residues in SF. The microstructures and particle sizes of the resultant microcapsules were investigated by using a scanning electron microscope (SEM) and a laser scattering particle size distribution analyzer. The resulting microcapsules exhibited a regular spherical morphology with a 4–5 μm narrow diameter distribution range. And the AgNPs attached to the surface exhibited an even distribution. According to the analytical results of DSC, TGA, and infrared system, the SF-AgNPs microcapsule presents enhanced thermal stability and obvious thermal regulation properties. In addition, it was found that the SF-AgNP microcapsule also exhibited a good antibacterial activity against both Gram-positive bacteria (Staphylococcus aureus), and Gram-negative bacteria (Escherichia coli). The SF-AgNPs microcapsule synthesized in this study could be a potential candidate for thermal regulation and healthcare applications.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Chalco-Sandoval, W., Jose Fabra, M., Lopez-Rubio, A., and Lagaron, J.M.: Electrospun heat management polymeric materials of interest in food refrigeration and packaging. J. Appl. Polym. Sci. 131, 40661 (2014).
2.Chalco-Sandoval, W., Jose Fabra, M., Lopez-Rubio, A., and Lagaron, J.M.: Development of polystyrene-based films with temperature buffering capacity for smart food packaging. J. Food Eng. 164, 55 (2015).
3.Sarier, N. and Onder, E.: Organic phase change materials and their textile applications: An overview. Thermochim. Acta 540, 7 (2012).
4.Kousksou, T., Arid, A., Jamil, A., and Zeraouli, Y.: Thermal behavior of building material containing microencapsulated PCM. Thermochim. Acta 550, 42 (2012).
5.Chen, L., Xu, L., Shang, H., and Zhang, Z.: Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energy Convers. Manage. 50, 723 (2009).
6.Zhao, C.Y. and Zhang, G.H.: Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications. Renewable Sustainable Energy Rev. 15, 3813 (2011).
7.Palanikkumaran, M., Gupta, K.K., Agrawal, A.K., and Jassal, M.: Highly stable hexamethylolmelamine microcapsules containing n-octadecane prepared by in situ encapsulation. J. Appl. Polym. Sci. 114, 2997 (2009).
8.Ozonur, Y., Mazman, M., Paksoy, H.O., and Evliya, H.: Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int. J. Energy Res. 30, 741 (2006).
9.Baimark, Y., Srisa-ard, M., and Srihanam, P.: Morphology and thermal stability of silk fibroin/starch blended microparticles. Express Polym. Lett. 4, 781 (2010).
10.Jin, Y., Zhang, Y., Hang, Y., Shao, H., and Hu, X.: A simple process for dry spinning of regenerated silk fibroin aqueous solution. J. Mater. Res. 28, 2897 (2013).
11.Cao, Z., Chen, X., Yao, J., Huang, L., and Shao, Z.: The preparation of regenerated silk fibroin microspheres. Soft Matter 3, 910 (2007).
12.Wei, W., Zhang, Y., Shao, H., and Hu, X.: Posttreatment of the dry-spun fibers obtained from regenerated silk fibroin aqueous solution in ethanol aqueous solution. J. Mater. Res. 26, 1100 (2011).
13.Koh, L., Cheng, Y., Teng, C., Khin, Y., Loh, X., Tee, S., Low, M., Ye, E., Yu, H., Zhang, Y., and Han, M.: Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 46, 86 (2015).
14.Xie, J., Lee, J.Y., Wang, D.I.C., and Ting, Y.P.: Silver nanoplates: From biological to biomimetic synthesis. ACS Nano 1, 429 (2007).
15.Benn, T.M. and Westerhoff, P.: Nanoparticle silver released into water from commercially available sock fabrics (vol 42, pg 4133, 2008). Environ. Sci. Technol. 42, 7025 (2008).
16.Tian, J., Wong, K.K.Y., Ho, C., Lok, C., Yu, W., Che, C., Chiu, J., and Tam, P.K.H.: Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2, 129 (2007).
17.Zhang, S., Tang, Y., and Vlahovic, B.: A review on preparation and applications of silver-containing nanofibers. Nanoscale Res. Lett. 11, 80 (2016).
18.Park, M.V.D.Z., Neigh, A.M., Vermeulen, J.P., de la Fonteyne, L.J.J., Verharen, H.W., Briede, J.J., van Loveren, H., and de Jong, W.H.: The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32, 9810 (2011).
19.Fei, X., Jia, M., Du, X., Yang, Y., Zhang, R., Shao, Z., Zhao, X., and Chen, X.: Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties. Biomacromolecules 14, 4483 (2013).
20.Calamak, S., Aksoy, E.A., Ertas, N., Erdogdu, C., Sagiroglu, M., and Ulubayram, K.: Ag/silk fibroin nanofibers: Effect of fibroin morphology on Ag+ release and antibacterial activity. Eur. Polym. J. 67, 99 (2015).
21.Tian, Y., Jiang, X., Chen, X., Shao, Z., and Yang, W.: Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer. Adv. Mater. 26, 7393 (2014).
22.Selvakannan, P.R., Swami, A., Srisathiyanarayanan, D., Shirude, P.S., Pasricha, R., Mandale, A.B., and Sastry, M.: Synthesis of aqueous Au core–Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air–water interface. Langmuir 20, 7825 (2004).
23.Cao, L., Tang, F., and Fang, G.: Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials. Sol. Energy Mater. Sol. Cells 123, 183 (2014).
24.Taketani, I., Nakayama, S., Nagare, S., and Senna, M.: The secondary structure control of silk fibroin thin films by post treatment. Appl. Surf. Sci. 244, 623 (2005).
25.Zhao, L., Luo, J., Wang, H., Song, G., and Tang, G.: Self-assembly fabrication of microencapsulated n-octadecane with natural silk fibroin shell for thermal-regulating textiles. Appl. Therm. Eng. 99, 495 (2016).
26.Zhang, X., Wang, X., and Wu, D.: Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectiveness. Energy 111, 498 (2016).
27.Kvitek, L., Panacek, A., Soukupova, J., Kolar, M., Vecerova, R., Prucek, R., Holecova, M., and Zboril, R.: Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. C 112, 5825 (2008).
28.Chen, X., Shao, Z., Knight, D.P., and Vollrath, F.: Conformation transition kinetics of Bombyx mori silk protein. Proteins: Struct., Funct., Bioinf. 68, 223 (2007).
29.Luo, J., Zhang, Y., Huang, Y., Shao, H., and Hu, X.: A bio-inspired microfluidic concentrator for regenerated silk fibroin solution. Sens. Actuators, B 162, 435 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed